The Lie Derivative of Densities

Definition 1. Let v be a C^{1} vector field on M, and σ a C^{1} density on M. Denote by $\Phi_{t v}$ the flow induced by v on M. The Lie derivative of σ with respect to v is a density $L_{v} \sigma$ on M which satisfies

$$
\left(L_{v} \sigma\right)(p)=\left.\frac{d}{d t}\right|_{t=0} \Phi_{t v}^{*} \sigma(p)
$$

Note that $\Phi_{t v}^{*} \sigma(p)$ is inside the vector space $\left|T_{p} M\right|$, so it makes sense to try to differentiate this with respect to t. We shall prove that this derivative exists by calculating it explicitly.

We shall use the following lemma
Lemma 1. Suppose that $X(t)$ and $A(t)$ are a family of $n \times n$ matrices so that

$$
\frac{d}{d t} X(t)=A(t) X(t)
$$

Then the determinant of $X(t)$ satisfies

$$
\frac{d}{d t}(\operatorname{det} X(t))=\operatorname{Tr}(A(t)) \operatorname{det} X(t)
$$

where the trace, $\operatorname{Tr}(A)$ means the sum of the diagonal entries of the matrix A (which is the sum of the eigenvalues).

We shall leave the proof of this as an exercise, but mention the following hint:
The chain rule tells us that the derivative of $\operatorname{det} X(t)$ depends only on the derivative of $X(t)$ and the derivative of det.

$$
\frac{d}{d t} X(t)=\left.\frac{d}{d s}\right|_{s=0}(I+s A(t)) X(t) \text { for each } t
$$

Therefore the lemma will follow if you can prove that

$$
\left.\frac{d}{d s}\right|_{s=0} \operatorname{det}(I+s A(t))=\operatorname{Tr}(A(t))
$$

A slick proof could use $e^{s A(t)}$ instead of $(I+s A(t))$, and use the definition of det and $T r$ in terms of eigenvalues, and the knowledge of how eigenvalues of $e^{s A}$ compare to those of A.

Lemma 2. If v is a C^{1} vector field on an open set $U \subset \mathbb{R}^{n}$ given by

$$
v=v_{1} \frac{\partial}{\partial x_{1}}, \ldots, v_{n} \frac{\partial}{\partial x_{n}}
$$

the Lie derivative of $\sigma_{\text {Leb }}$ is given by

$$
L_{v} \sigma_{\mathrm{Leb}}=\sum \frac{\partial v_{i}}{\partial x_{i}} \sigma_{\text {Leb }}
$$

Proof. First, using Lemma 1 we get

$$
\begin{aligned}
& D \sigma_{L e b}(p)\left(e_{1}, \ldots, e_{n}\right)\left(u^{1}, \ldots, u^{n}\right)=\sum_{i} d x_{i}\left(u^{i}\right)=\sum_{i} u_{i}^{i} \\
& \begin{aligned}
L_{v} \sigma_{L e b} & =\left.\frac{d}{d t}\right|_{t=0} \Phi_{t v}^{*} \sigma_{\text {Leb }}(p) \\
& =\left.\frac{d}{d t}\right|_{t=0} \sigma_{\text {Leb }}\left(\Phi_{t v}(p)\right)\left(D \Phi_{t v}(p) e_{1}, \ldots, D \Phi_{t v} e_{n}\right) \sigma_{L e b}(p) \\
& =\left(\sum_{i} d x_{i}\left(\left.\frac{d}{d t}\right|_{t=0} D \Phi_{t v}\left(e_{i}\right)\right)\right) \sigma_{\text {Leb }}(p) \\
& =\left(\sum_{i} d x_{i}\left(-L_{v} \frac{\partial}{\partial x_{i}}\right)\right) \sigma_{L e b}(p) \\
& =\sum \frac{\partial v_{i}}{\partial x_{i}} \sigma_{L e b}
\end{aligned}
\end{aligned}
$$

To compute $L_{v} \sigma$ in coordinates, we can use the above calculation and the following lemma, the proof of which is an exercise:

Lemma 3. If ϕ is a C^{1} function, σ a C^{1} density, and v a C^{1} vectorfield on a manifold M,

$$
L_{v}(\phi \sigma)=\left(L_{v} \phi\right) \sigma+\phi\left(L_{v} \sigma\right)
$$

Using the above two lemmas, we can observe

Lemma 4.

$$
L_{v_{1}+v_{2}} \sigma=L_{v_{1}} \sigma+L_{v_{2} \sigma}
$$

You should think of $L_{v} \sigma$ as how you see σ change when you flow yourself using the vector field v. If you think of yourself as a set U on which σ can be integrated, this suggests the following theorem:

Theorem 5. Suppose that $U \subset M$ is an open subset of M so that its closure $\bar{U} \subset M$ is compact. Let v be a complete C^{1} vector field, and $\sigma a C^{1}$ density, then

$$
\left.\frac{d}{d t}\right|_{t=0}\left(\int_{\Phi_{t v}(U)} \sigma\right)=\int_{U} L_{v} \sigma
$$

where $\Phi_{t v}(U)$ indicates the image of U under the flow of v for time t.

Proof. Note that the change of variables theorem tells us that

$$
\int_{\Phi_{t v}(U)} \sigma=\int_{U} \Phi_{t v}^{*} \sigma
$$

We need to justify moving $\frac{d}{d t}$ under the integral sign. Define the density

$$
\sigma_{t}:=\Phi_{t v}^{*} \sigma
$$

As we are more familiar with the properties of functions then densities, fix a smooth embedding $M \subset \mathbb{R}^{N}$ so we can use the smooth positive density $\sigma_{v o l}$ coming from the restriction of the Euclidean metric on \mathbb{R}^{N}, and define the function $\varphi: M \times \mathbb{R} \longrightarrow \mathbb{R}$ so that

$$
\varphi(p, t) \sigma_{v o l}(p)=\sigma_{t}(p)
$$

The function φ is C^{1}, so $\frac{\partial \varphi}{\partial t}(x, t)$ converges uniformly to $\frac{\partial \varphi}{\partial t}(x, 0)$ as $t \rightarrow 0$ on the compact set \bar{U}. Therefore, using the mean value theorem, we get that for all $\epsilon>0$, there exists some $\delta>0$ so that for $|t|<\delta$ and $x \in \bar{U}$,

$$
\left|\frac{\varphi(x, t)-\varphi(x, 0)}{t}-\frac{\partial \varphi}{\partial t}(x, 0)\right|<\epsilon
$$

so

$$
\begin{aligned}
\left|\frac{\int_{U} \sigma_{t}-\int_{U} \sigma_{0}}{t}-\int_{U} L_{v} \sigma\right| & \leq \int_{U}\left|\frac{\sigma_{t}-\sigma_{0}}{t}-L_{v} \sigma\right| \\
& =\int_{U}\left|\frac{\varphi(x, t)-\varphi(x, 0)}{t}-\frac{\partial \varphi}{\partial t}(x, 0)\right| \sigma_{v o l} \\
& \leq \int_{U} \epsilon \sigma_{v o l}=\epsilon \int_{U} \sigma_{v o l}
\end{aligned}
$$

As ϵ was arbitrary,

$$
\lim _{t \rightarrow 0} \frac{\int_{U} \Phi_{t v}^{*} \sigma-\int_{U} \sigma}{t}=\int_{U} L_{v} \sigma
$$

so

$$
\left.\frac{d}{d t}\right|_{t=0}\left(\int_{\Phi_{t v}(U)} \sigma\right)=\int_{U} L_{v} \sigma
$$

Exercises

1. Prove Lemma 1
2. Prove Lemma 3

3. Prove Lemma 4

4. In standard coordinates on \mathbb{R}^{3}, let

$$
v:=x_{1}^{2} \frac{\partial}{\partial x_{1}}-x_{1} x_{2} \frac{\partial}{\partial x_{2}}-x_{1} x_{3} \frac{\partial}{\partial x_{3}}
$$

suppose that U is a bounded open set in \mathbb{R}^{3}, and $\Phi_{t v}$ is defined on U. Prove that

$$
\int_{U} \sigma_{\text {Leb }}=\int_{\Phi_{t v}(U)} \sigma_{L e b}
$$

Prove also that in this case, the naive change of variables theorem holds:

$$
\int_{U} f \sigma_{\mathrm{Leb}}=\int_{\Phi_{t v}(U)}\left(f \circ \Phi_{t v}\right) \sigma_{L e b}
$$

5. Suppose that σ is a compactly supported C^{1} density on M. Prove that if v is any C^{1} vector field on M,

$$
\int_{M} L_{v} \sigma=0
$$

