(1) (20 points) Prove that if \(X \subset \mathbb{R}^n \times \mathbb{R}^m \) is rectifiable and bounded, then \(X \) has measure zero if and only if the following set has measure 0 in \(\mathbb{R}^n \):
\[
\{ p \in \mathbb{R}^n \text{ so that } X \cap p \times \mathbb{R}^m \text{ does not have measure 0 in } \mathbb{R}^n \}
\]
(Hint: Prove and use the fact that if \(Y \) is bounded, \(Y \) has measure zero if \(\int \chi_Y = 0 \), and if \(Y \) has measure 0, \(\int \chi_Y = 0 \).)

(2) (30 points) Compute the volume of the \(n \) dimensional unit ball for all \(n \).
(See the hints in Munkres chapter 19, problem 6.)

(3) (20 points) Show that the following extended integral exists:
\[
\int_{\{0 < \|x\| < 1\} \subset \mathbb{R}^n} \|x\|^{-n}
\]

(4) (30 points) Let \(G \) be a compact Lie group with dimension greater than 0.
Use the notation \(l_g : G \rightarrow G \) to denote the action on \(G \) by left multiplication \(l_g h = gh \), and the notation \(r_g : G \rightarrow G \) to denote the action on \(G \) by right multiplication, \(r_g h = hg \).
(a) Prove that there exists a unique density \(\sigma_G \) on \(G \) so that
\[
\int_G \sigma_G = 1
\]
and \(\sigma_G \) is preserved by left multiplication:
\[
l_g^* \sigma_G = \sigma_G \quad \forall g \in G
\]
(b) Show that this density is also preserved by right multiplication:
\[
r_g^* \sigma_G = \sigma_G \quad \forall g \in G
\]
(c) A smooth action of \(G \) on a manifold \(M \) is a family of diffeomorphisms \(\phi_g : M \rightarrow M \)
so that the map
\[
(g, m) \mapsto \phi_g(m) : G \times M \rightarrow M
\]
is smooth, and
\[
\phi_g \circ \phi_h = \phi_{gh}
\]
Prove (using some kind of averaging procedure) that if \(\phi \) is a smooth action of a compact Lie group \(G \) on \(M \) that there exists a positive density \(\sigma \) on \(M \) which is preserved by the action of \(G \). In other words,
\[
\phi_g^* \sigma = \sigma \quad \forall g \in G
\]