HOMEWORK FOR 18.101, FALL 2007 ASSIGNMENT 3 DUE 11AM FRIDAY OCTOBER 19 IN ROOM 108

- (1) For C^2 functions $f : \mathbb{R}^2 \longrightarrow \mathbb{R}$ and $g : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$, write a formula for $D_1 D_2(f \circ g)$ in terms of the derivatives up to second order of f and g.
- (2) Prove the following facts: (a)

(b)

(d)

(e)

$$d(fg) = fdg + gdf$$

- $f^*dg = d(g \circ f)$
- (c) $f^*(\lambda \alpha) = (\lambda \circ f)f^*(\alpha)$
- $\alpha(f_*(v)) \circ f = f^* \alpha(v)$

$$f_*(\lambda v) = (\lambda \circ f^{-1})f_*v$$

Note that these formulas look simpler if you define $f_*\lambda = \lambda \circ f^{-1}$ and $f^*\lambda = \lambda \circ f$.

- (3) Prove that if f is a differentiable function on a compact manifold M which is not the empty set or a single point, then there exist at least two points p_1 and p_2 on M where $df|_{p_i} = 0$.
- (4) (a) Suppose that $U \subset \mathbb{R}^n$ is open, and $v := \sum v_i \frac{\partial}{\partial x_i}$, $w := \sum w_i \frac{\partial}{\partial x_i}$ are C^{∞} vector fields on U. Prove that there exists a unique smooth vector field [v, w] with the following property:

 $L_{[v,w]}f = L_v(L_wf) - L_w(L_vf)$ for all smooth $f: U \longrightarrow \mathbb{R}$

This is called the Lie bracket of v and w. Give a formula for [v, w] in terms of the derivatives of v_i and w_i .

(b) Show that the Lie bracket of any two C^∞ vector fields on a manifold is also defined, and prove that if f is a diffeomorphism

$$f_*[v,w] = [f_*v, f_*w]$$

(c) Suppose that u, v, w are smooth vector fields. Prove the following identity, called the Jacobi identity

$$[u, [v, w]] + [w, [u, v]] + [v, [w, u]] = 0$$