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Or: How much balance is possible?
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Abstract

Discrepancy theory is a subfield of combinatorics in which one asks the

following question: given a finite set system S1, . . . ,Sm ⊆ {1, . . . ,n}; color the

elements {1, . . . ,n} with two colors, say red and blue. What is the difference

between red and blue elements in the most unbalanced set for the best

coloring?

The two main results are the Beck-Fiala Theorem and Spencer’s Theo-

rem, which both have very elegant proofs as we will see in this lecture.

1 Preliminaries

For this lecture, we consider a finite ground set of elements {1, . . . ,n} and a family

of sets S1, . . . ,Sm ⊆ {1, . . . ,n}. We abbreviate S := {S1, . . . ,Sm}. A coloring is a

map χ : {1, . . . ,n} → {−1,+1} and the discrepancy of a coloring is the maximum

inbalance maxi=1,...,m |χ(Si )| where we write χ(Si ) :=
∑

j∈Si
χ( j ). The discrepancy

of the whole set system is the discrepancy of the best coloring, i.e.

disc(S ) = min
χ:{1,...,n}→{±1}

max
S∈S

|χ(S)|

Of course, this bound will heavily depend on the structure of the set system as

well as on the number n of elements and the number m of sets.

Applications of discrepancy theory can be found e.g. in computer science.

For example in the set system S = {{1,2}, {1,3}, {2,3}, {2,4,5}} the best coloring is

depicted below and the discrepancy is 2.
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2 Random colorings

A simple way to obtain fairly balanced colorings is to choose a random color-

ing. More precisely, we choose each color χ( j ) independently from {−1,1} with

Pr[χ( j ) = 1] = Pr[χ( j ) =−1] = 1
2

. Then for each set we expect that χ(S) is closely

concentrated around the mean – which is 0. Recall the Chernov bound:

Theorem 1 (Chernov bound). Take independent random variables X1, . . . , Xk with

Pr[Xi = 1] = Pr[Xi =−1] = 1
2

. Then for any λ≥ 0, Pr[|
∑k

i=1 Xk | >λ
p

k] < 2e−λ
2/2.

This provides a first, simple way to obtain good colorings:

Theorem 2. Take a random coloring χ : {1, . . . ,n} → {±1}. With prob at least 1
2

,

|χ(Si )| ≤
√

2|Si | · ln(4m) ∀i = 1, . . . ,m

Proof. First, fix a set Si . Then by Chernov bound

Pr
[∣
∣
∣

∑

j∈Si

χ( j )
∣
∣
∣>

√

2 · ln(4m)
︸ ︷︷ ︸

:=λ

·
√

|Si |
]

≤ 2e−(
p

2·ln(4m))2/2 ≤
1

2m

Then

Pr[∃i ∈ {1, . . . ,m} : |χ(Si )| >
√

2|Si | · ln(4m)]
Union bound

≤ m ·
1

2m
=

1

2

3 The Beck Fiala Theorem

In many applications, the set system is sparse, that means it contains a huge

number of sets and elements, but the number of incidences is far smaller than

the worst case n ·m. In this case, the Beck Fiala Theorem can provide fairly good

colorings.

Theorem 3 (Beck-Fiala Theorem ’81 [2]). Let S be any set system where no ele-

ment is in more than t sets. Then disc(S ) < 2t .

Proof. We introduce variables y j ∈ [−1,1]. Consider the following system

=Ay,A∈{0,1}m×n

︷ ︸︸ ︷∑

j∈S

y j = 0 ∀S ∈S (1)

−1 ≤ y j ≤ 1 ∀ j ∈ [n]

We make 2 claims.
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Claim 4. If n > m, then there is a solution y for (1) with y j ∈ {−1,1} for at least

one j .

Proof of claim. Take y ∈ ker(A). Scale y s.t. ‖y‖∞ = 1. ♦

Claim 5. Suppose we delete all sets with |S| ≤ t . Then n > m.

Proof of claim. Suppose |Si | > t ∀i . Then

m · t < # ones in A ≤ n · t

because no element appears in more than t sets. ♦

This suggests the following method to find a coloring:

(1) Set χ( j ) := undef

(2) WHILE not yet all elements defined DO

(3) Compute a solution y to

∑

j∈S

y j = 0 ∀S ∈S : S contains > t undefined elements

y j = χ( j ) if χ( j ) defined

−1 ≤ y j ≤ 1

with maximal number of j ’s with y j ∈ {±1}.

(4) IF y j ∈ {±1} THEN χ( j ) := y j

Each time the algorithm runs (3), we have the invariant #{undefined elements} >
#{sets with > t undefined elements}, thus the solution y is never unique and we

can move choose the y such that it satisfies one more inequality −1 ≤ y j ≤ 1 with

equality.

Now, letχ ∈ {−1,1}n be the final coloring. Now consider, how the discrepancy
∑

j∈S y j of set S behaves. Until the moment in which the constraint for S was

removed, we had y(S) = 0. But only t elements where fractional at that point. In

the worst case, they can switch from −0.999.. to +1, but in any case at the very

end |y(S)| < 2t .

In fact, a much stronger bound is conjectured:

Conjecture 6 (Beck-Fiala). For any t and set system with no element in more than

t sets, one has disc(S ) ≤O(
p

t ).

But not even O(t 0.999) is known!!
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4 Spencer’s Theorem

Now we come to the best possible bound in the case of arbitrary dense set sys-

tems, which is a celebrated result of Joel Spencer.

Theorem 7 (Spencer ’85 [4]). For any set system with m ≥ n sets on n elements,

one has disc(S ) ≤ O(
√

n · ln( 2m
n

)). In particular, if m ≤ O(n), then disc(S ) ≤
O(

p
n).

The proof idea is that we have an enourmous number 2n of potential color-

ings. If the number of sets is not too large, by a simple counting argument, we

must have some colorings χA ,χB such that χA(Si ) ≈ χB (Si ) for all sets. Even if

both colorings are bad, their difference 1
2

(χA −χB ) is not.

coloring A:

coloring B:

difference

+1 −1 +1 +1 +1

−1 +1 +1 −1 +1

1 −1 0 1 0

S1 S2

This can be formalized in the following very useful lemma:

Lemma 8 (Partial coloring lemma). Define

G(λ) :=
{

10 ·e−λ
2/10 λ≥ 2

10 · log( 10
λ ) λ< 2 b

2

e−Θ(λ2)

λ

Θ(log( 1
λ ))

G(λ)

and choose parameters ∆1, . . . ,∆m > 0 such that

m∑

i=1

G

(
∆ip
|Si |

)

≤
n

10
(2)

Then there is a partial coloring χ : [n] → {0,±1} with |χ(Si )| ≤∆i for all i = 1, . . . ,m

and |supp(χ)| ≥ n
10

.1

Let’s first check, why this quickly implies Spencer’s Theorem:

1Here supp(χ) := { j ∈ [n] |χ( j ) 6= 0} is the support of χ.
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Proof of Spencer’s Thm. We first claim that we can find a partial coloring satisfy-

ing the claimed bound of ∆ :=C
√

n · log 2m
n

. Then we bound (2) by

m∑

i=1

G

(

C

√

log
2m

n

)

≤ m ·10e
−(C

√

log 2m
n

)2/10 ≤
n

10

for C > 0 large enough, hence there is at least a partial coloring χ with |χ(S)| ≤
O

(√

n · ln( 2m
n

)
)

. We color the elements in supp(χ) and remove them from the

set system. We iterate this until all elements are colored. Then

disc(S ) ≤
∑

i≥0

O
(√

0.9i n · ln( 2m
0.9i n

)
)

=O

(√

n · ln( 2m
n

)

)

In other words: the discrepancy bound is decreasing geometrically in i , hence

the error is dominated by the first term.

In the remaining lecture, we proof the partial coloring lemma.

4.1 Entropy

The entropy of an arbitrary discrete random variable Z (the domain does not

matter – it could be Z ∈Z or Z ∈Z
n) is defined as

H(Z ) =
∑

x

Pr[Z = x] · log2

(
1

Pr[Z = x]

)

Here the sum runs over all values that Z can attain. Imagine that a data source

generates a string of n symbols according to distribution Z . Then intuitively, an

optimum compression needs asymptotically for n →∞ an expected number of

n ·H(Z ) many bits to encode the string. If Z attains only two values, say Pr[Z =
a] = p and Pr[Z = b] = 1−p then the entropy looks as follows:

0

0.5

1.0

0 0.5 1.0

H(Z ) = p · log( 1
p

)+ (1−p) · log( 1
1−p

)

p
0

0.5

1.0

0 0.5 1.0

x · log( 1
x

)

x

Two useful facts on entropy are:
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• Uniform distribution maximizes entropy: If Z attains k distinct values,

then H(Z ) is maximal if Z is the uniform distribution. In that case H(Z ) =
log2(k). Conversely, if H(Z ) ≤ δ, then there must be at least one event x

with Pr[Z = x] ≥ ( 1
2

)δ.

• Subadditivity: If Z , Z ′ are random variables and f is any function, then

H( f (Z , Z ′)) ≤ H(Z )+H(Z ′).

First of all, let us show where the “magic” function G is coming from. Recall

that ⌈·⌋ rounds to be nearest integer, i.e. ⌈0.7⌋ = 1 and ⌈0.2⌋ = 0.

Lemma 9. Suppose χ is a random coloring and ∆=λ
p
|S|, λ> 0. Then

H

(⌈
χ(S)

2∆

⌋)

≤G(λ).

Proof. We show only the case λ≥ 2 and save the case λ< 2 for the exercises. We

are also loose with the constants. Define indicator variables

X j =
{

1
⌈
χ(S)
2∆

⌋

= j

0 otherwise

Note that for λ≫ 2, we have Pr[X0 = 1] ≈ 1 and Pr[X j = 1] ≈ 0, thus the entropy

of those random variables must be small.

We can use H(X j ) ≤ 2Pr[X j = 1] · log 1
Pr[X j=1]

as long as Pr[X j = 1] ≤ 1
2

. For

| j | > 0 we can use the Chernov bound

Pr[X j = 1] ≤ Pr[χ(S) ≥ (2 j −1)λ
√

|S|] ≤ e−Ω((λ j )2)

⇒ H(X j ) ≤ 2Pr[X j = 1] · log

(
1

Pr[X j = 1]

)

≤O(1) ·e−Ω((λ j )2) · (λ j )2

Moreover

Pr[X0 = 1] ≥ 1−e−λ
2/4 ⇒ H(X0) ≤ 2Pr[X j = 0] · log

(
1

Pr[X j = 0]

)

≤O(1) ·e−λ
2/4 ·λ2

Then

H

(⌈
χ(S)

2λ∆

⌋)

= H((X j ) j∈Z)
subadditivity

≤
∑

j∈Z
H(X j ) ≤O(1) ·e−Ω(λ2).

6



Proof of partial coloring lemma. Denote

Z
︸︷︷︸

∈Zm

:= Z (χ) :=
(⌈

χ(S1)

2∆1

⌋

, . . . ,

⌈
χ(Sm)

2∆m

⌋)

Then

H(Z )
subaddivity

≤
m∑

i=1

H(Zi )
Lemma 9

≤
m∑

i=1

G

(
∆ip
|Si |

)
assumption

≤
n

10

Thus there is a vector b ∈ Z
n s.t. Pr[Z = b] ≥ ( 1

2
)n/10. In other words, there are

2n · ( 1
2

)n/10 many colorings χ s.t.

Z (χ) = b =⇒
⌈
χ(Si )

2∆i

⌋

= bi ∀i ∈ [m] =⇒ |χ(Si )−2∆i bi | ≤∆i ∀i ∈ [m]

In other words: all those colorings might be very bad, but at least they are very

similar. We use the following fact (and defer its proof to the exercises):

Fact: For any X ⊆ {0,1}n of size |X | ≥ 20.9n , there are x, y ∈ X with

‖x − y‖1 ≥ n/10.

Now, take two colorings χA ,χB ∈ {±1}m with Z (χA) = Z (χB ) = b that differ in at

least n
10

entries and define

χ( j ) :=
1

2
(χA( j )−χB ( j )) ∈ {−1,0,+1}

Finally2

|χ(Si )| =
1

2
(|χA(Si )−χB (Si )|
︸ ︷︷ ︸

≤2∆i

) ≤∆i .

5 Further material

A very readable source for more details on discrepancy theory is Chapter 4 in the

book of Matousek [3].

Observe that the Beck-Fiala Theorem uses simple linear algebra and gives

immediately a polynomial time algorithm. On the other hand, the Entropy method

2Note that 1
2













1

1

−1

−1






−







1

−1

1

−1












=







0

1

−1

0






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is based on the pigeonhole principle — with exponentially many pigeons and pi-

geonholes. But Lovett and Meka provided a simple and elegant algorithm based

on random walks that can find the coloring provided by Spencer’s Theorem (this

simplifies a more complex algorithm of Bansal [1]).
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Exercises

Exercise (Hypergraph splitting)

Let G = (V ,E ) be a 3-uniform, 6-regular hypergraph (i.e. V = {1, . . . ,n} is a finite

set of vertices and E = {e1, . . . ,em} is a finite set of hyperedges with ei ⊆ V and

|ei | = 3. Moreover every node is contained in exactly 6 hyperedges, i.e. ∀ j ∈
V : |{i ∈ [m] : j ∈ ei }| = 6). Show that one can partition the set of hyperedges

into E = E1∪̇E2 such that E1 and E2 both still cover all the nodes (i.e.
⋃

e∈E1
e =

⋃

e∈E2
e =V ).

Exercise (kary trees)

Let k ∈ N with k ≥ 2. Consider a k-ary tree of depth k (below, you can find one

for k = 3).

We consider all its edges E as elements (i.e. n := |E | = k +k2 + . . .+kk ) and we

define two set systems

S1 := {S ⊆ E | S is a path from the root to a leaf}

S2 := {outgoing edges of v | v is interiour node}

(in other words, S2 is a partition of the edge set; one set in S1 is drawn in bold-

blue, one set in S2 is drawn in bold-red). Show the following:

i) disc(S1) ≤ 1 and disc(S2) ≤ 1

ii) disc(S1 ∪S2) = k

iii) There is a partial coloring χ with |supp(χ)| ≥Ω(n) such that |χ(S)| ≤ O(1)

for all S ∈S1 ∪S2.

Exercise (The Beck Fiala setting)

Consider a set system S = {S1, . . . ,Sm} with n elements and suppose that every

element is in at most t sets and each set has size |Si | ≤ t . First show that there is
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a partial coloring χ : [n] → {0,±1} with |supp(χ)| ≥ n
10

and |χ(S)| ≤O(
p

t ) for each

S ∈S . Then conclude that disc(S ) ≤O(
p

t · logn).

Hint: If you have difficulties in getting the bound right, suppose that the sets all

have the same size.

Exercise (Many elements and few sets)

Suppose S1, . . . ,Sm is a set system over n elements with n ≥ 1000m · log(n). Show

that there is a partial coloring with |χ(Si )| = 0 for all i = 1, . . . ,m and |supp(χ)| ≥
n
10

.

Exercise (Missing case of Lemma 9)

Let S ⊆ [n] be a set and let χ : [n] → {±1} be a random coloring. Let k ∈ Z≥2 and

∆ :=
p
|S|
k

. Show that H
(⌈

χ(S)
2∆

⌋)

≤ c · log(k) for a large enough constant c > 0.

Hint: Write
⌈
χ(S)
2∆

⌋

=
⌈

χ(S)

2
p
|S| ·k

⌋

=
⌈

χ(S)

2
p
|S|

⌋

·k+ f (χ) for some function f (χ) ∈ {−k, . . . ,k}.
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