# Discrepancy theory Or: How much balance is possible?

### Thomas Rothvoß

#### Abstract

Discrepancy theory is a subfield of combinatorics in which one asks the following question: given a finite set system  $S_1, ..., S_m \subseteq \{1, ..., n\}$ ; color the elements  $\{1, ..., n\}$  with two colors, say *red* and *blue*. What is the difference between red and blue elements in the most unbalanced set for the best coloring?

The two main results are the Beck-Fiala Theorem and Spencer's Theorem, which both have very elegant proofs as we will see in this lecture.

## 1 Preliminaries

For this lecture, we consider a finite *ground set* of elements  $\{1, ..., n\}$  and a family of sets  $S_1, ..., S_m \subseteq \{1, ..., n\}$ . We abbreviate  $\mathscr{S} := \{S_1, ..., S_m\}$ . A *coloring* is a map  $\chi : \{1, ..., n\} \rightarrow \{-1, +1\}$  and the *discrepancy* of a coloring is the maximum inbalance  $\max_{i=1,...,m} |\chi(S_i)|$  where we write  $\chi(S_i) := \sum_{j \in S_i} \chi(j)$ . The discrepancy of the whole set system is the discrepancy of the best coloring, i.e.

$$\operatorname{disc}(\mathscr{S}) = \min_{\chi:\{1,\dots,n\}\to\{\pm 1\}} \max_{S\in\mathscr{S}} |\chi(S)|$$

Of course, this bound will heavily depend on the structure of the set system as well as on the number *n* of elements and the number *m* of sets.

Applications of discrepancy theory can be found e.g. in computer science. For example in the set system  $\mathscr{S} = \{\{1,2\},\{1,3\},\{2,3\},\{2,4,5\}\}$  the best coloring is depicted below and the discrepancy is 2.



### 2 Random colorings

A simple way to obtain fairly balanced colorings is to choose a *random coloring*. More precisely, we choose each color  $\chi(j)$  independently from  $\{-1, 1\}$  with  $\Pr[\chi(j) = 1] = \Pr[\chi(j) = -1] = \frac{1}{2}$ . Then for each set we expect that  $\chi(S)$  is closely concentrated around the mean – which is 0. Recall the *Chernov bound*:

**Theorem 1** (Chernov bound). *Take independent random variables*  $X_1, \ldots, X_k$  *with*  $\Pr[X_i = 1] = \Pr[X_i = -1] = \frac{1}{2}$ . *Then for any*  $\lambda \ge 0$ ,  $\Pr[|\sum_{i=1}^k X_k| > \lambda \sqrt{k}] < 2e^{-\lambda^2/2}$ .

This provides a first, simple way to obtain good colorings:

**Theorem 2.** Take a random coloring  $\chi : \{1, ..., n\} \rightarrow \{\pm 1\}$ . With prob at least  $\frac{1}{2}$ ,

 $|\chi(S_i)| \le \sqrt{2|S_i| \cdot \ln(4m)} \quad \forall i = 1, \dots, m$ 

*Proof.* First, fix a set  $S_i$ . Then by Chernov bound

$$\Pr\left[\left|\sum_{j\in S_i} \chi(j)\right| > \underbrace{\sqrt{2 \cdot \ln(4m)}}_{:=\lambda} \cdot \sqrt{|S_i|}\right] \le 2e^{-(\sqrt{2 \cdot \ln(4m)})^2/2} \le \frac{1}{2m}$$

Then

$$\Pr[\exists i \in \{1, \dots, m\} : |\chi(S_i)| > \sqrt{2|S_i| \cdot \ln(4m)}] \stackrel{\text{Union bound}}{\leq} m \cdot \frac{1}{2m} = \frac{1}{2}$$

### 3 The Beck Fiala Theorem

In many applications, the set system is *sparse*, that means it contains a huge number of sets and elements, but the number of incidences is far smaller than the worst case  $n \cdot m$ . In this case, the Beck Fiala Theorem can provide fairly good colorings.

**Theorem 3** (Beck-Fiala Theorem '81 [2]). Let  $\mathscr{S}$  be any set system where no element is in more than t sets. Then  $disc(\mathscr{S}) < 2t$ .

*Proof.* We introduce variables  $y_i \in [-1, 1]$ . Consider the following system

$$=Ay, A \in \{0, 1\}^{m \times n}$$

$$\sum_{j \in S} y_j = 0 \quad \forall S \in \mathscr{S}$$

$$-1 \le y_j \le 1 \quad \forall j \in [n]$$
(1)

We make 2 claims.

**Claim 4.** If n > m, then there is a solution y for (1) with  $y_j \in \{-1, 1\}$  for at least one *j*.

*Proof of claim.* Take  $y \in \text{ker}(A)$ . Scale y s.t.  $||y||_{\infty} = 1$ .

**Claim 5.** Suppose we delete all sets with  $|S| \le t$ . Then n > m.

*Proof of claim.* Suppose  $|S_i| > t \forall i$ . Then

$$m \cdot t < \#$$
 ones in  $A \le n \cdot t$ 

because no element appears in more than *t* sets.

This suggests the following method to find a coloring:

(1) Set  $\chi(j) :=$  undef

(2) WHILE not yet all elements defined DO

(3) Compute a solution *y* to

$$\sum_{j \in S} y_j = 0 \quad \forall S \in \mathscr{S} : S \text{ contains} > t \text{ undefined elements}$$
$$y_j = \chi(j) \quad \text{if } \chi(j) \text{ defined}$$
$$-1 \le y_j \le 1$$

with maximal number of *j*'s with  $y_j \in \{\pm 1\}$ .

(4) IF 
$$y_j \in \{\pm 1\}$$
 THEN  $\chi(j) := y_j$ 

Each time the algorithm runs (3), we have the invariant #{undefined elements} > #{sets with > *t* undefined elements}, thus the solution *y* is never unique and we can move choose the *y* such that it satisfies one more inequality  $-1 \le y_j \le 1$  with equality.

Now, let  $\chi \in \{-1, 1\}^n$  be the final coloring. Now consider, how the discrepancy  $\sum_{j \in S} y_j$  of set *S* behaves. Until the moment in which the constraint for *S* was removed, we had  $\gamma(S) = 0$ . But only *t* elements where fractional at that point. In the worst case, they can switch from -0.999. to +1, but in any case at the very end  $|\gamma(S)| < 2t$ .

In fact, a much stronger bound is conjectured:

**Conjecture 6** (Beck-Fiala). *For any t and set system with no element in more than t sets, one has disc*( $\mathscr{S}$ )  $\leq O(\sqrt{t})$ .

But not even  $O(t^{0.999})$  is known!!

 $\diamond$ 

### 4 Spencer's Theorem

Now we come to the best possible bound in the case of arbitrary *dense* set systems, which is a celebrated result of Joel Spencer.

**Theorem 7** (Spencer '85 [4]). For any set system with  $m \ge n$  sets on n elements, one has  $disc(\mathscr{S}) \le O(\sqrt{n \cdot \ln(\frac{2m}{n})})$ . In particular, if  $m \le O(n)$ , then  $disc(\mathscr{S}) \le O(\sqrt{n})$ .

The proof idea is that we have an enourmous number  $2^n$  of potential colorings. If the number of sets is not too large, by a simple counting argument, we must have some colorings  $\chi_A$ ,  $\chi_B$  such that  $\chi_A(S_i) \approx \chi_B(S_i)$  for all sets. Even if both colorings are bad, their *difference*  $\frac{1}{2}(\chi_A - \chi_B)$  is not.



This can be formalized in the following very useful lemma:

Lemma 8 (Partial coloring lemma). Define

$$G(\lambda) := \begin{cases} 10 \cdot e^{-\lambda^2/10} & \lambda \ge 2\\ 10 \cdot \log(\frac{10}{\lambda}) & \lambda < 2 \end{cases} \xrightarrow{G(\lambda)} \underbrace{\Theta(\log(\frac{1}{\lambda}))}_{2} & e^{-\Theta(\lambda^2)} \\ 2 & \lambda \end{cases}$$

and choose parameters  $\Delta_1, \ldots, \Delta_m > 0$  such that

$$\sum_{i=1}^{m} G\left(\frac{\Delta_i}{\sqrt{|S_i|}}\right) \le \frac{n}{10} \tag{2}$$

Then there is a partial coloring  $\chi : [n] \to \{0, \pm 1\}$  with  $|\chi(S_i)| \le \Delta_i$  for all i = 1, ..., mand  $|supp(\chi)| \ge \frac{n}{10}$ .<sup>1</sup>

Let's first check, why this quickly implies Spencer's Theorem:

<sup>&</sup>lt;sup>1</sup>Here  $supp(\chi) := \{j \in [n] \mid \chi(j) \neq 0\}$  is the support of  $\chi$ .

*Proof of Spencer's Thm.* We first claim that we can find a partial coloring satisfying the claimed bound of  $\Delta := C\sqrt{n \cdot \log \frac{2m}{n}}$ . Then we bound (2) by

$$\sum_{i=1}^{m} G\left(C\sqrt{\log\frac{2m}{n}}\right) \le m \cdot 10e^{-(C\sqrt{\log\frac{2m}{n}})^2/10} \le \frac{n}{10}$$

for C > 0 large enough, hence there is at least a partial coloring  $\chi$  with  $|\chi(S)| \le O\left(\sqrt{n \cdot \ln(\frac{2m}{n})}\right)$ . We color the elements in  $\operatorname{supp}(\chi)$  and remove them from the set system. We iterate this until all elements are colored. Then

$$\operatorname{disc}(\mathscr{S}) \leq \sum_{i \geq 0} O\left(\sqrt{0.9^{i} n \cdot \ln(\frac{2m}{0.9^{i} n})}\right) = O\left(\sqrt{n \cdot \ln(\frac{2m}{n})}\right)$$

In other words: the discrepancy bound is decreasing geometrically in i, hence the error is dominated by the first term.  $\Box$ 

In the remaining lecture, we proof the partial coloring lemma.

### 4.1 Entropy

The *entropy* of an arbitrary discrete random variable *Z* (the domain does not matter – it could be  $Z \in \mathbb{Z}$  or  $Z \in \mathbb{Z}^n$ ) is defined as

$$H(Z) = \sum_{x} \Pr[Z = x] \cdot \log_2\left(\frac{1}{\Pr[Z = x]}\right)$$

Here the sum runs over all values that *Z* can attain. Imagine that a data source generates a string of *n* symbols according to distribution *Z*. Then intuitively, an optimum compression needs asymptotically for  $n \to \infty$  an expected number of  $n \cdot H(Z)$  many bits to encode the string. If *Z* attains only two values, say  $\Pr[Z = a] = p$  and  $\Pr[Z = b] = 1 - p$  then the entropy looks as follows:



Two useful facts on entropy are:

- Uniform distribution maximizes entropy: If *Z* attains *k* distinct values, then H(Z) is maximal if *Z* is the uniform distribution. In that case  $H(Z) = \log_2(k)$ . Conversely, if  $H(Z) \le \delta$ , then there must be at least one event *x* with  $\Pr[Z = x] \ge (\frac{1}{2})^{\delta}$ .
- *Subadditivity:* If Z, Z' are random variables and f is any function, then  $H(f(Z, Z')) \le H(Z) + H(Z')$ .

First of all, let us show where the "magic" function *G* is coming from. Recall that  $\lceil \cdot \rceil$  rounds to be nearest integer, i.e.  $\lceil 0.7 \rceil = 1$  and  $\lceil 0.2 \rceil = 0$ .

**Lemma 9.** Suppose  $\chi$  is a random coloring and  $\Delta = \lambda \sqrt{|S|}$ ,  $\lambda > 0$ . Then

$$H\left(\left\lceil \frac{\chi(S)}{2\Delta} \right\rfloor\right) \leq G(\lambda).$$

*Proof.* We show only the case  $\lambda \ge 2$  and save the case  $\lambda < 2$  for the exercises. We are also loose with the constants. Define indicator variables

$$X_j = \begin{cases} 1 & \left\lceil \frac{\chi(S)}{2\Delta} \right\rceil = j \\ 0 & \text{otherwise} \end{cases}$$

Note that for  $\lambda \gg 2$ , we have  $\Pr[X_0 = 1] \approx 1$  and  $\Pr[X_j = 1] \approx 0$ , thus the entropy of those random variables must be small.

We can use  $H(X_j) \le 2 \Pr[X_j = 1] \cdot \log \frac{1}{\Pr[X_j = 1]}$  as long as  $\Pr[X_j = 1] \le \frac{1}{2}$ . For |j| > 0 we can use the Chernov bound

$$\begin{split} &\Pr[X_j = 1] \leq \Pr[\chi(S) \geq (2j-1)\lambda\sqrt{|S|}] \leq e^{-\Omega((\lambda j)^2)} \\ \Rightarrow \quad &H(X_j) \leq 2\Pr[X_j = 1] \cdot \log\left(\frac{1}{\Pr[X_j = 1]}\right) \leq O(1) \cdot e^{-\Omega((\lambda j)^2)} \cdot (\lambda j)^2 \end{split}$$

Moreover

$$\Pr[X_0 = 1] \ge 1 - e^{-\lambda^2/4} \Rightarrow H(X_0) \le 2\Pr[X_j = 0] \cdot \log\left(\frac{1}{\Pr[X_j = 0]}\right) \le O(1) \cdot e^{-\lambda^2/4} \cdot \lambda^2$$

Then

$$H\left(\left\lceil \frac{\chi(S)}{2\lambda\Delta} \right\rfloor\right) = H((X_j)_{j\in\mathbb{Z}}) \stackrel{\text{subadditivity}}{\leq} \sum_{j\in\mathbb{Z}} H(X_j) \leq O(1) \cdot e^{-\Omega(\lambda^2)}.$$

| _ | ٦ |
|---|---|
|   | 1 |
| _ |   |
|   |   |

Proof of partial coloring lemma. Denote

$$\underbrace{Z}_{\in\mathbb{Z}^m} := Z(\chi) := \left( \left\lceil \frac{\chi(S_1)}{2\Delta_1} \right\rfloor, \dots, \left\lceil \frac{\chi(S_m)}{2\Delta_m} \right\rfloor \right)$$

Then

$$H(Z) \stackrel{\text{subaddivity }}{\leq} \sum_{i=1}^{m} H(Z_i) \stackrel{\text{Lemma 9}}{\leq} \sum_{i=1}^{m} G\left(\frac{\Delta_i}{\sqrt{|S_i|}}\right) \stackrel{\text{assumption }}{\leq} \frac{n}{10}$$

Thus there is a vector  $b \in \mathbb{Z}^n$  s.t.  $\Pr[Z = b] \ge (\frac{1}{2})^{n/10}$ . In other words, there are  $2^n \cdot (\frac{1}{2})^{n/10}$  many colorings  $\chi$  s.t.

$$Z(\chi) = b \implies \left\lceil \frac{\chi(S_i)}{2\Delta_i} \right\rceil = b_i \,\forall i \in [m] \implies |\chi(S_i) - 2\Delta_i b_i| \le \Delta_i \,\forall i \in [m]$$

In other words: all those colorings might be very bad, but at least they are very similar. We use the following fact (and defer its proof to the exercises):

**Fact:** For any  $X \subseteq \{0, 1\}^n$  of size  $|X| \ge 2^{0.9n}$ , there are  $x, y \in X$  with  $||x - y||_1 \ge n/10$ .

Now, take two colorings  $\chi_A, \chi_B \in \{\pm 1\}^m$  with  $Z(\chi_A) = Z(\chi_B) = b$  that differ in at least  $\frac{n}{10}$  entries and define

$$\chi(j) := \frac{1}{2}(\chi_A(j) - \chi_B(j)) \in \{-1, 0, +1\}$$

Finally<sup>2</sup>

$$|\chi(S_i)| = \frac{1}{2} \underbrace{(|\chi_A(S_i) - \chi_B(S_i)|)}_{\leq 2\Delta_i} \leq \Delta_i$$

### 5 Further material

A very readable source for more details on discrepancy theory is Chapter 4 in the book of Matousek [3].

Observe that the Beck-Fiala Theorem uses simple linear algebra and gives immediately a polynomial time algorithm. On the other hand, the Entropy method

<sup>2</sup>Note that 
$$\frac{1}{2} \begin{pmatrix} 1 \\ 1 \\ -1 \\ -1 \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ -1 \\ 0 \end{pmatrix}$$

is based on the pigeonhole principle — with exponentially many pigeons and pigeonholes. But Lovett and Meka provided a simple and elegant algorithm based on random walks that can find the coloring provided by Spencer's Theorem (this simplifies a more complex algorithm of Bansal [1]).

### **Exercises**

#### **Exercise (Hypergraph splitting)**

Let G = (V, E) be a 3-uniform, 6-regular hypergraph (i.e.  $V = \{1, ..., n\}$  is a finite set of vertices and  $E = \{e_1, ..., e_m\}$  is a finite set of hyperedges with  $e_i \subseteq V$  and  $|e_i| = 3$ . Moreover every node is contained in exactly 6 hyperedges, i.e.  $\forall j \in V : |\{i \in [m] : j \in e_i\}| = 6\}$ . Show that one can partition the set of hyperedges into  $E = E_1 \dot{\cup} E_2$  such that  $E_1$  and  $E_2$  both still cover all the nodes (i.e.  $\bigcup_{e \in E_1} e = \bigcup_{e \in E_2} e = V$ ).

#### Exercise (kary trees)

Let  $k \in \mathbb{N}$  with  $k \ge 2$ . Consider a *k*-ary tree of depth *k* (below, you can find one for k = 3).



We consider all its edges *E* as elements (i.e.  $n := |E| = k + k^2 + ... + k^k$ ) and we define two set systems

- $\mathscr{S}_1 := \{S \subseteq E \mid S \text{ is a path from the root to a leaf}\}$
- $\mathscr{S}_2 := \{ \text{outgoing edges of } v \mid v \text{ is interiour node} \}$

(in other words,  $\mathscr{S}_2$  is a partition of the edge set; one set in  $\mathscr{S}_1$  is drawn in boldblue, one set in  $\mathscr{S}_2$  is drawn in bold-red). Show the following:

- i) disc( $\mathscr{S}_1$ )  $\leq 1$  and disc( $\mathscr{S}_2$ )  $\leq 1$
- ii) disc $(\mathscr{S}_1 \cup \mathscr{S}_2) = k$
- iii) There is a partial coloring  $\chi$  with  $|\operatorname{supp}(\chi)| \ge \Omega(n)$  such that  $|\chi(S)| \le O(1)$  for all  $S \in \mathscr{S}_1 \cup \mathscr{S}_2$ .

#### **Exercise (The Beck Fiala setting)**

Consider a set system  $\mathscr{S} = \{S_1, ..., S_m\}$  with *n* elements and suppose that every element is in at most *t* sets and each set has size  $|S_i| \le t$ . First show that there is

a partial coloring  $\chi : [n] \to \{0, \pm 1\}$  with  $|\operatorname{supp}(\chi)| \ge \frac{n}{10}$  and  $|\chi(S)| \le O(\sqrt{t})$  for each  $S \in \mathcal{S}$ . Then conclude that disc $(\mathcal{S}) \le O(\sqrt{t} \cdot \log n)$ .

**Hint:** If you have difficulties in getting the bound right, suppose that the sets all have the same size.

#### **Exercise (Many elements and few sets)**

Suppose  $S_1, ..., S_m$  is a set system over *n* elements with  $n \ge 1000m \cdot \log(n)$ . Show that there is a partial coloring with  $|\chi(S_i)| = 0$  for all i = 1, ..., m and  $|\operatorname{supp}(\chi)| \ge \frac{n}{10}$ .

#### Exercise (Missing case of Lemma 9)

Let  $S \subseteq [n]$  be a set and let  $\chi : [n] \to \{\pm 1\}$  be a random coloring. Let  $k \in \mathbb{Z}_{\geq 2}$  and  $\Delta := \frac{\sqrt{|S|}}{k}$ . Show that  $H\left(\left\lceil \frac{\chi(S)}{2\Delta} \right\rfloor\right) \leq c \cdot \log(k)$  for a large enough constant c > 0. **Hint:** Write  $\left\lceil \frac{\chi(S)}{2\Delta} \right\rfloor = \left\lceil \frac{\chi(S)}{2\sqrt{|S|}} \cdot k \right\rfloor = \left\lceil \frac{\chi(S)}{2\sqrt{|S|}} \right\rfloor \cdot k + f(\chi)$  for some function  $f(\chi) \in \{-k, \dots, k\}$ .

# References

- [1] N. Bansal. Constructive algorithms for discrepancy minimization. *CoRR*, abs/1002.2259, 2010. informal publication.
- [2] J. Beck and T. Fiala. "Integer-making" theorems. *Discrete Appl. Math.*, 3(1):1– 8, 1981.
- [3] J. Matoušek. *Geometric discrepancy*, volume 18 of *Algorithms and Combinatorics*. Springer-Verlag, Berlin, 1999. An illustrated guide.
- [4] J. Spencer. Six standard deviations suffice. *Transactions of the American Mathematical Society*, 289(2):679–706, 1985.