
18.095: The Stein Paradox

Lecturer: Philippe Rigollet Jan. 13, 2016

1. WHAT IS STATISTICS ABOUT?

In a nutshell, statistics is about inferring the properties of a large (potentially infinite
population) from the observation of a subset of this population. The idea is that it may be
impossible or too costly to query the entire population. Here are some examples.

1.1 Gallup polls

This is perhaps the best known example of statistics at work, especially during an election.
The population we are trying to understand are the voters, more specifically, the voters on
the day of the election as opinion may change between a poll and an election.

Today, everyone is talking about the Iowa republican caucuses. In this case the popula-
tion of interest is registered and voting republicans on the day of the election. In
2012, this population counted 121,501 voters, which is clearly too big to poll entirely. How
are Gallup polls made?

A press release dated Jan. 12, 2016 states

A new Public Policy Polling surveyed 530 likely GOP caucus goers and found
that the GOP presidential front-runner Trump leads with 28%, a few weeks
ahead of the first-in-the-nation caucus.

Is 530 a large enough number? How was this number 530 found? We will try to answer
these questions.

1.2 Drug discovery

Every year hundreds of new drugs are tested to be released subject to the approval of the US
Food and Drug Administration (FDA). Aripiprazole, sold under the brand name Abilify R©

by Otsuka Pharmaceutical, is an antipsychotic. It is recommended and primarily used in
the treatment of schizophrenia and bipolar disorder. Before releasing Abilify R© in 2002,
Otsuka ran clinical trials to measure the efficacy of the drug among other things such as
side effects. To be approved by FDA, the clinical trials must demonstrate that the drug is
more performant than the benchmark, typically a placebo. Such clinical trials are heavily
regulated and typically operate in phases and we focus on the last one before launching the
product. In this phase, the most patients possible are enrolled in the study to obtain the
best possible accuracy.

Here the population of interest is the set of all potential future consumers of
Abilify R©. This an abstract population, unlike in the previous example.

In the case of bipolar schizophrenic patients, a study was run on 414 patients, measur-
ing some criterion called PANSS (the larger the better). The difference PANSS(placebo)-
PANSS(Abilify R©) is reported to lie in the following confidence interval : (−14.8,−2.1). It is
clearly only negative numbers so it is good but how was this interval constructed? Why is
it not a single number for PANSS(placebo)-PANSS(Abilify R©)? How would have the result
changed if we had 4,000 patients in this study?
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1.3 Body measurements

In class, we asked 5 students to measure (in cm) the following:

1. span of their right hand

2. length of left forearm and

3. circumference of wrist

What population is it representative of? The students in the classroom on that day?
MIT undergrads? MIT students? Americans? People? Mammals? In principle, we can
extrapolate as much as we want but the bigger the population the larger sample we have
access to.

2. RANDOM VARIABLES

So statistics is about understanding what the population might look like from a few samples.
It always goes in pair with probability, which instead is trying to look at what random
samples from a given population will look like. The word random is key here: the 530
surveyed persons are chosen at random, the 414 patients are also chosen at random (and
assigned drug or placebo at random) and the 5 students were chosen at random. This is
very important if we want the sample to be representative of the population.

2.1 The binomial distribution

Let us go back first to the poll example. Assume that eventually, 30% of the voters will
choose Trump. What will a sample of size 530 look like? Since 530 ∗ 30% = 159, we
expect about 159 of the respondents in the poll to say Trump. However, in the above poll
148 ' 530 ∗ 28% people responded that they would vote Trump. What if we had 160? Is
that much less likely than having 160 or 158 Trump supporters in the sample?

Probability theory allows us to quantify exactly the probability for each of these out-
comes as long as we know the proportion in the overall population. Let us assume for the
time being that this number is .3, that is 30% of the republican voters will vote for Trump
on republication election day. What is the probability that we will see exactly 159 Trump
supporters in our sample of n = 530 republican voters? To answer this question, let’s go
back to basics by changing the size n of our sample. Write N to be the number of Trump
supporters.

• Assume first that we have a sample of size n = 1. The probability that this person is
a Trump supporter is IP(N) = IP(T ) = 0.3

• Assume that n = 2 and our sample as 2 voters. Let’s call them Bernie and Hillary.
What is the probability that one of these two is a Trump supporters? This can happen
if Bernie is a Trump supporter and Hillary is not (let’s write this as T T̄ ) or vice versa
if Hillary is a Trump supporter and Bernie is not (T̄ T ). From the randomness of our
sample, Hillary’s vote is independent of that of Bernie’s. So that IP(T T̄ ) = IP(T )IP(T̄ ),
therefore1

IP(N = 1) = IP(T T̄ or T̄ T ) = 2IP(T )IP(T̄ ) = 2IP(T )[1− IP(T )] = 2 · 0.3 · 0.7 = 0.42
1here we used the two basic laws of probability:

1. IP(A or B) = IP(A) + IP(B) if A ∩B = ∅, that is A and B are disjoint (T T̄ and T T̄ are disjoint) and
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• Assume now that n = 3 and we want to compute IP(N = 1). One voter supporting
Trump can happen in one of three ways: T T̄ T̄ , T̄ T T̄ or T̄ T̄ T . Each of these disjoint
events have probability 0.3(0.7)2 = 0.147 so that IP(N = 1) = 3 · 0.147 = 0.441.

More generally if we have n voters, what is IP(N = k), k = 0, . . . , n? We need basic
combinatorics first: we need to count sequences of T s and T̄ s of length n contain exactly k
T s. The answer is the well known quantity(

n

k

)
=

n!

k! ∗ (n− k)!
=

n · (n− 1) · · · 2 · 1
k · (k − 1) · · · 2 · 1 ∗ (n− k) · (n− k − 1) · · · 2 · 1

=
n · (n− 1) · · · (n− k + 2) · (n− k + 1)

k · (k − 1) · · · 2 · 1

To convince yourself that this is true, note that we have to place k T ’s in n possible slots.
For the first one, there are all n slots. For the second, there are n− 1 remaining slots, etc.
This gives the numerator. To explain the presence of k! in the denominator, note that we
have counted some sequences several times. In the case N = 3, k = 2, we can easily see why
by looking at these two scenarios:

1. The first T goes to position 1, the second goes to position 2

2. The first T goes to position 2, the second goes to position 1

Clearly both scenarios form the sequence TT T̄ , which was counted twice. for a general k,
how many times was it counted? The answer is: once for each possible order of the k T s.
There are k! = k(k − 1) · · · 2 · 1 such orders. Indeed, there are k choices for the first one,
k − 1 choices for the second one etc.

So we have determined that there are
(
n
k

)
sequences with exactly k T s. What is the

probability of such a sequence? All have the same probability so let us take the simplest
one to compute: TT · · ·T︸ ︷︷ ︸

k

T̄ ¯· · ·T̄︸ ︷︷ ︸
n−k

. We have, by independence

IP(TT · · ·T T̄ ¯· · ·T̄ ) = IP(T )IP(T ) · · · IP(T )︸ ︷︷ ︸
k

IP(T̄ )IP(T̄ ) · · · IP(T̄ )︸ ︷︷ ︸
n−k

= IP(T )k(1− p(T ))n−k .

Therefore, for each n and k, we have a formula

IP(N = k) =

(
n

k

)
0.3k0.7n−k

So N is a random number between 0 and n and we know the probability for each value that
it can take. When it satisfies this formula, we say that N has a binomial distribution with
parameters n and p = 0.3. We can also say (less precisely) that N is a binomial random
variable. For a general p ∈ (0, 1), not necessarily equal to 0.3 and a general n, we have

IP(N = k) =

(
n

k

)
pk(1− p)n−k

In this case, we write N ∼ Bin(n, p).

2. if A and B are independent IP(A and B) = IP(A) · IP(B)

Together these imply that IP(Ā) = 1− IP(A)

3



Figure 1: Binomial probabilities for parame-
ters n = 530 and p = 0.3

In our numerical example, n = 530 so

IP(N = 159) =

(
530

159

)
0.31590.7371 = 0.038 ,

and IP(N = 158) = 0.037 for example. The
probabilities IP(N = k) for k = 0, . . . , 530
are plotted in Figure 1. Note that they sum
up to 1.

2.2 The Bernoulli distribution

There exists a nice and convenient way to
represent a binomial N . Recall that in our
example N is the number of voters among
n = 530 randomly chosen that intend to
vote for Trump. For each voter i = 1, . . . , n,
let Xi be a random variable takes only one
of two values:

Xi =

{
1 if voter i intends to vote for Trump
0 otherwise

It is not hard to see that we can represent

N =
n∑
i=1

Xi (2.1)

(indeed only the ones that vote for Trump are summed together). Note that for each voter
i, IP(Xi = 1) = 0.3 and therefore IP(Xi = 0) = 0.7. Such a random variable Xi, that takes
only two values is said to have Bernoulli2 distribution with parameter 0.3. More generally a
random variable X ∈ {0, 1} such that X = 1 with probability p and X = 0 with probability
1− p for some p ∈ [0, 1] is said to have Bernoulli distribution with parameter p, or simply
that X has Bernoulli distribution and we write X ∼ Bern(p).

Note that if N has a binomial distributions with parameters n = 1 and p then N has a
Bernoulli distribution with parameter p.

2.3 The Gaussian distribution

When it comes to body measurements, the random variables that we get are not integers
but rather real numbers (we neglect rounding effects). Indeed, the length of a forearm could
be any real number in a reasonably large interval. Since there is a continuum of values,
rather than giving the probability that the measurement is equal to some value, we give the
probability that it falls in a set A ⊂ IR:

IP(X ∈ A) =

∫
A
f(x)dx

where f(·) is called the density of X. It satisfies f(x) ≥ 0 for all x ∈ IR and
∫
R f(x)d(x) =

IP(X ∈ IR) = 1. Such a random variable is called continuous as opposed to the binomial or
Bernoulli random variables that are called discrete.

2named after Swiss scientist Jacob Bernoulli. He derived the first version of the law of large numbers in
his work Ars Conjectandi.
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The randomness of the body measurements does not arise from first principles like that
of the number of Trump supporters. Rather, we make some modeling assumptions. This
means that we assume that f ∈ F is in some class F of functions. An overwhelmingly
popular one is the following class:

F =
{
fµ,σ2 : fµ,σ2(x) =

1

σ
√

2π
exp

(
− (x− µ)2

2σ2
)
, x ∈ IR, µ ∈ IR, σ2 > 0

}
If a random variable X has density fµ,σ2 , we say that it has Gaussian (or Normal) distri-
bution with parameters µ and σ2 and we write X ∼ N (µ, σ2). The function x 7→ fµ,σ2(x)
has a well known bell shaped curve (See figure 2).

A useful property of the Gaussian distribution that can be easily checked using a change
of variable is that if X ∼ N (µ, σ2) then aX + b ∼ N (aµ+ b, a2σ2).

Figure 2: Gaussian densities for various values
of µ and σ2 (source Wikipedia).

So far, we have only talked about ran-
dom variables but we can also talk about
random vectors (even random matrices but
this is for another lecture). For example,
if we concatenate the three body measure-
ments into on vector of IR3, we get a random
vector. Let Xi denote the ith random body
measurement for i = 1, 2, 3 and assume
that Xi ∼ N (µi, σ

2
i ). Assume further that

the three random variables are independent.
Then the vector X = (X1, X2, X3) ∈ IR3

has multivariate Gaussian distribution with
density:

f(x1, x2, x3) = fµ1,σ2
1
(x1)·fµ2,σ2

2
(x2)·fµ3,σ2

3
(x3) .

This means that for any A ⊂ IR3,

IP((X1, X2, X3) ∈ A) =

∫∫∫
A
f(x1, x2, x3)dx1dx2dx3.

For independent random variables, it is always true that the density of the vector that
they form is given by the product of their individual (aka marginal) densities.

3. MAXIMUM LIKELIHOOD ESTIMATION

The random variables N ∼ Bin(530, p) or X ∼ N (µ, σ2) depend on unknown parameters
that we would like to estimate from the data that we have collected.

3.1 Binomial distribution

To start, let us go back to our poll. All we know for this problem is that n = 530 and
that the binomial random variable N was observed to be 148 (note that this number is not
random). From this we would like to infer the parameter p, the proportion of the population
that will eventually vote for Trump. There are many statistical methods to do that, but
perhaps the most popular one is called maximum likelihood estimation.
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Figure 3: Binomial probabilities for parame-
ters n = 530 and p = 0.3 (black), p = 0.5
(green), p = 0.7 (blue) and p = 0.9 (red)

The principle behind maximum likeli-
hood estimation is quite simple: choose the
parameter which is the most likely to have
generated the data at hand. In our poll ex-
ample, we are trying to find the parameter
p which is the most likely to have generated
the number 148. In Figure 3, we see that
when p varies, the most likely value (the
one with largest probability) changes.

The question becomes: what value of
p ∈ (0, 1) is such that IP(N = 148) =
max1≤k≤148 IP(N = 148)? We need to
study the function

p 7→
(

530

148

)
p148(1− p)382

and find its maximum. We can do this in
full generality by studying the function:

p 7→ g(p) =

(
n

k

)
pk(1− p)n−k

While we would need to check that carefully using second derivatives, we can see from
Figure 3 that the only extremum is a maximum so we need to find p̂ such that the derivative
vanishes: f ′(p̂) = 0.

g′(p̂) =

(
n

k

)[
kpk−1(1− p)n−k − (n− k)pk(1− p)n−k−1

]
= 0

this is equivalent to

p̂ =
k

n
.

In other words, the maximum likelihood estimator is simply the average number of Trump
supporters within the sample. This is reassuring to get such a simple estimator in the
binomial case but there exist models where the maximum likelihood estimator may be
much more complicated.

Applying this to our numerical data, we get p̂ = 148/530 ' 0.28.

3.2 Gaussian distribution

For the Gaussian distribution, there are 2 unknown parameters µ and σ2 for each mea-
surement. To make things simple, assume that σ2 = 1 and our goal is to estimate µ.
Consider the span of the hand for example. Our observations consist of a random vector
X = (X(1), . . . , X(5)) ∈ IR5 where the coordinates are independent (students are indepen-
dent) and assume that they all have the same parameter µ so that X has a density on IR5

given by

f(X(1), . . . , X(5)) =
1

(2π)5/2
exp

(1

2

5∑
i=1

(X(i) − µ)2
)
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We are interested in finding the maximum of the function

µ 7→ 1

(2π)5/2
exp

(
− 1

2

5∑
i=1

(X(i) − µ)2
)
.

Since x 7→ log(x) is increasing, it is equivalent to finding the maximum of

g(µ) = −5

2
log(2π)− 1

2

5∑
i=1

(X(i) − µ)2 .

We take the derivative and set it zero to get g′(µ̂) = 0 if and only if

µ̂ =
1

5

5∑
i=1

X(i) .

Therefore, here too, the maximum likelihood estimator of µ is the average µ̂.
In the case of all three measurements, we are interested in the vector (µ1, µ2, µ3) ∈ IR3

and it is easy to check that the maximum likelihood estimator is given by (µ̂1, µ̂2, µ̂3) ∈ IR3

where

µ̂j =
1

5

5∑
i=1

X
(i)
j

4. PERFORMANCE

The next question is: “how accurate is this estimate”? Clearly if we had collected a sample
of size 10,000, it would have been more accurate. But what is the effect of the sample size
on accuracy?

From here on, we focus on the Gaussian case and always assume that σ2 = 1. Our goal
is to assess how good is the performance of the maximum likelihood estimator, that is to
measure how large µ̂− µ is. Note that if X1, . . . , X5 are random variables then

µ̂− µ =
1

5

5∑
i=1

X(i) − µ

is also a random variable and it is desirable to get a global understanding of how large this
quantity is.

4.1 Expectation

The expectation (or expected value) of a discrete random variable N is defined as

IE[N ] =

n∑
k=1

kIP(N = k)

and that of a continuous random variable X with density f is given by

IE[X] =

∫
IR
xf(x)dx

The operator IE maps a random variable to a real number and enjoys some very nice
properties that follow from the property of probabilities. We will use the following ones:
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1. For any two random variables X and Y and deterministic real number a: IE[aX+Y ] =
aIE[X] + IE[Y ] (linearity)

2. For any two independent random variables X and Y : IE[XY ] = IE[X]IE[Y ].

Intuitively, the expectation is the average of a random variable and is therefore a measure
of location.

If Y is a Bernoulli distribution with parameter p. Then IE[Y ] = 0 · IP(Y = 0)+1 · IP(Y =
1) = IP(Y = 1) = p. Moreover, it follows from (2.1) and the linearity of expectation that if
N ∼ Bin(n, p) then IE[N ] = np.

For the Gaussian random variable X ∼ N (µ, 1) then

IE[X] =
1√
2π

∫
IR
x exp(−1

2
(x− µ)2)dx = µ .

Moreover, using a change of variables it can be easily checked that X − µ ∼ N (0, 1).

4.2 Quadratic risk

Recall that we are interested in understanding the size of the random variable µ̂ − µ so
a natural candidate is its expectation. However, in this case, it is not hard to see that
IE[µ̂ − µ] = 0, regardless of how many students are sampled. The problem is that this
measure does not account for the variability of µ̂. Instead, we measure the quadratic risk
of µ̂ at µ defined by

R(µ̂, µ) = IE[(µ̂− µ)2]

more generally for two random vectors µ̂, µ, we define

R(µ̂, µ) = IE[‖µ̂− µ‖2] ,

where ‖ · ‖ denotes the Euclidean norm.
In the case of one single measurement across 5 (independent) students, we have

R(µ̂, µ) = IE[(µ̂− µ)2] = IE
[(1

5

5∑
i=1

Z(i)
)2]

where Z(i) = X(i) − µ ∼ N (0, 1) are independent. Using the properties of the expectation,
it yields

R(µ̂, µ) =
1

25

5∑
i,j=1

IE[Z(i)Z(j)] =
1

25

5∑
i=1

IE[(Z(i))2] =
1

5

where the last inequality follows from integration by parts: IE[(Z(i))2] = 1.
Note that R(µ̂, µ) is independent of µ. More generally, if we have n observations it can

be checked that R(µ̂, µ) = 1/n.
In the case of three body measurements, we have

R(µ̂, µ) = IE[‖µ̂− µ‖2] =
3

5
.

This seems to be the best we can do since the estimator is so natural. What else could do
better?
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5. THE STEIN PARADOX

This is perhaps the most surprising result in statistics: there exists an estimator that
performs better than the maximum likelihood estimator under the quadratic risk. It is
called the James-Stein estimator. In the case of three body measurements, it is defined as
follows:

µ̃ =
(

1− 1

5‖µ̂‖2
)
µ̂ .

where µ̂ is the maximum likelihood estimator. More generally if we had d body measure-
ments measured over n students, the formula would be

µ̃ =
(

1− d− 2

n‖µ̂‖2
)
µ̂ .

In effect, this estimator is shrinking the maximum likelihood estimator.
We are now going to show that R(µ̃, µ) < R(µ̂, µ) for all µ ∈ IR3 as long as the body

measurements are independent of each other (which may be questionable).
To that end, observe that

R(µ̃, µ) = IE
[∥∥∥(1− 1

5‖µ̂‖2
)
µ̂− µ

∥∥∥2]
= IE

[∥∥∥µ̂− µ− µ̂

5‖µ̂‖2
∥∥∥2]

= IE
[
‖µ̂− µ‖2

]
+ IE

[ 1

25‖µ̂‖2
]
− 2

5

3∑
j=1

IE
[(µ̂j − µj)µ̂j

‖µ̂‖2
]
.

Since µ̂j ∼ N (µj , 1/5), we have

IE
[(µ̂j − µj)µ̂j

‖µ̂‖2
]

=
( 5

2π

)3/2 ∫∫∫
IR3

(xj − µj)xj
x2j + x22 + x23

exp
[
− 5

2

3∑
i=1

(xi − µi)2
]
dx1dx2dx3

To apply an integration by parts notice that if we look only at the integral with respect to
xj , we have

∂

∂xj

xj
x2j + x22 + x23

=
‖x‖2 − 2x2j
‖x‖4

and
∂

∂xj

{
− 1

5
exp

[
− 5

2

3∑
i=1

(xi − µi)2
]}

= (xj − µj) exp
[
− 5

2

3∑
i=1

(xi − µi)2
]

Using integration by parts we get

IE
[(µ̂j − µj)µ̂j

‖µ̂‖2
]

=
1

5

( 5

2π

)3/2 ∫∫∫
IR3

‖x‖2 − 2x2j
‖x‖4

exp
[
− 5

2

3∑
i=1

(xi − µi)2
]
dx1dx2dx3

=
1

5
IE
[‖µ̂‖2 − 2µ̂2j
‖µ̂‖4

]
=

1

5
IE
[ 1

‖µ̂‖2
]
− 2

5
IE
[ µ̂2j
‖µ̂‖4

]
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Summing up over j yields

3∑
j=1

IE
[(µ̂j − µj)µ̂j

‖µ̂‖2
]

=
(3

5
− 2

5

)
IE
[ 1

‖µ̂‖2
]

=
1

5
IE
[ 1

‖µ̂‖2
]

Therefore

R(µ̃, µ) = R(µ̂, µ)− 1

25
IE
[ 1

‖µ̂‖2
]
< R(µ̂, µ)

6. EXERCISES

6.1 Problem 1

Prove that in the case n = 1 but d is general, the James-Stein estimator outperforms the
maximum likelihood estimator in the Gaussian case if and only if d ≥ 3.

6.2 Problem 2

Fix λ > 0 and let X be a random variable with density

f(x) =

{
λe−λx if x ≥ 0
0 if x < 0

1. Compute IE[X]

2. Compute g(t) = P (X ≤ t) for any t > 0.

3. Show that g′(t) = f(t)

4. Let X1, . . . , Xn be n independent random variables with the same distribution as X.
Find the density of Y = maxiXi.

5. Compute the maximum likelihood estimator of λ from the observations X1, . . . , Xn.
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