
The steady states of coupled dynamical systems
compose according to matrix arithmetic

David I. Spivak

December 24, 2015

Abstract

Open dynamical systems are mathematical models of machines that take input, change
their internal state, and produce output. For example, one may model anything from
neurons to robots in this way. Several open dynamical systems can be arranged in
series, in parallel, and with feedback to form a new dynamical system—this is called
compositionality—and the process can be repeated in a fractal-like manner to form more
complex systems of systems. One issue is that as larger systems are created, their state
space grows exponentially.

In this paper a technique for calculating the steady states of a system of systems,
in terms of the steady states of its component dynamical systems, is provided. These
are organized into "steady state matrices" which are strongly analogous to bifurcation
diagrams. It is shown that the compositionality structure of dynamical systems fits with
the familiar monoidal structure for the steady state matrices, where serial, parallel, and
feedback composition of matrices correspond to multiplication, Kronecker product, and
partial trace operations. The steady state matrices of dynamical systems respect this
compositionality structure, exponentially reducing the complexity involved in studying
the steady states of composite dynamical systems.

1 Introduction

Open dynamical systems can be composed to make larger systems. For example, they can be
put together in series or in parallel

X1 X2

Y X1

X2

Y

(1)

1

1.1. Compositional viewpoints of dynamical systems 2

or in a more complex combination, possibly with feedback and splitting wires

X1
X2

Y
X1

X2

Y

(2)

A dynamical system has a set or space of states and a rule for how the state changes in time.
An open dynamical system also has an interface X (as shown above), which indicates the
number of input ports and output ports that exist for the system. Signals passed to the system
through its input ports influence how the state changes. An output signal is generated as a
function of the state and is passed through output port to serve as an input to a neighboring
system. The precise notions of dynamical systems we use in this paper (including discrete and
continuous models) will be given in Section 2; for now we speak about dynamical systems in
the abstract.

For any interface X, let OS(X) denote the set of all possible open dynamical systems of
type X. The idea is that a diagram, such as any of those found in (1) or (2), determines a
function

OS(X1) × OS(X2)→ OS(Y).
This function amounts to a formula that produces an open system of type Y given open
systems of type X1 and X2, arranged—in terms of how signals are passed—according to the
wiring diagram. The formula enforces that wires connecting interface correspond to variables
shared by the dynamical systems

1.1 Compositional viewpoints of dynamical systems

We are interested in looking at open dynamical systems in ways that respect arbitrary
interconnection (variable coupling) via wiring diagrams, as we now briefly explain. Above, we
explained that if open systems inhabit each interior box in a wiring diagram, we can construct
a composite open system for the outer box. But this is true in other domains as well, such as
matrices. That is, to each interface X, one can assign a set Mat(X) of the associated type; then,
given a matrix in each interior box of a wiring diagram one can put them together to form a
matrix for the outer box. In other words, a wiring diagram, such as any found in (1) or (2),
should determine a function

Mat(X1) ×Mat(X2)→ Mat(Y).

Moreover, there is a compositional mapping QX : OS(X)→ Mat(X), given by arranging steady
states into a matrix form. We say that a mapping is compositional if it behaves correctly with
respect to wiring diagrams in the following sense. Given open dynamical systems of type
X1 and X2, we can either compose first and apply the mapping to the result, or apply the

1.1. Compositional viewpoints of dynamical systems 3

mapping first and then compose the results. We want these to give the same answer. Formally,
we express this by saying that we want the following diagram to commute:

OS(X1) × OS(X2) OS(Y)

Mat(X1) ×Mat(X2) Mat(Y)
QX1×QX2 QY

In this paper, we provide a compositionalmapping from open dynamical systems of several
sorts—discrete, measurable, and continuous—to the matrix domain. The entries of these
matrices list, count, or measure the steady states—also known as equilibria or fixed points—of
the dynamical system for each input and output. The topology of a dynamical system is to a
large degree determined by its set of steady states and their stability properties, and these are
generally organized into bifurcation diagrams (e.g., as in [Str94]). Our classification in several
respects is a generalization bifurcation diagrams (see Remark 2.19), the exception being that it
leaves out the stability properties of equilibra, which can be computed by other means. The
reason we refer to them as matrices, rather than as bifurcation diagrams, is that they compose
according to matrix arithmetic. That is, when several dynamical subsystems are put together
in series, parallel, or with feedback to form a larger system, the classifying matrix for the
whole can be computed by multiplying, tensoring, or computing a partial trace (adding up
diagonal entries) of the subsystem matrices.

When dynamical systems are interconnected to form a larger system, the resulting system
may require a huge amount of data, as compared to the resulting steady state matrix. Two
different variables are at work here: the size of the input alphabet and the total number of
states. The former tends to grow exponentially in the number of input wires, and the latter
tends to grow exponentially in the number of internal boxes. The dynamical system itself
grows exponentially in both, whereas the matrix of steady states grows only in the number of
input wires.

N1

N2

N3
N6

N5

N4

X

(3)

For example, if each input wire in the diagram above carries two signals (say ’resting’ or
’active’), and each box carried three states (e.g., ’depolarized’, ’polarized’, or ’hyperpolarized’)
then expressing the dynamical system would require a table with roughly 2436 � 11, 648 rows,
whereas the matrix of steady states would require a relatively small 16 × 16 matrix. As more
internal boxes are encapsulated by the wiring diagram, an exponential savings is achieved by
considering the steady state matrix, rather than the whole dynamical system.

A potential interpretation of the steady state matrix in neuroscience is as follows. In
perception, it is not uncommon to consider neurons as dynamical systems [Izh07], and input

1.2. Plan of paper 4

signals can be classified as either expected or unexpected [CF78]. One way to think about this
is that expected input signals are those that do not change the state of the system, or at least do
not change it by very much. When the state is unchanged, so is the output of the system i.e.,
expected perception does not cause a change in behavior. The steady state matrix presented
here measures, for each (perception, behavior) pair, the set of states that are expected in that
context. The purpose of the present paper is to show that this measurement is compositional,
i.e., that it respects any given wiring structure.

One can give a similar interpretation for the steady state matrix for a discrete dynamical
system. For example, consider the machine described by Alan Turing in [Tur50], which turns
a light on and off every few minutes, unless stopped by a lever. Its state is the position of
an internal wheel, its input signals are given by the lever, and its output is electrical current
running the lightbulb. The steady state matrix tells us something important about the system:
that when the lever is "off", every state is fixed, but when the lever is in "on", the states are
constantly changing.

1.2 Plan of paper

While this paper has category theory as its underlying framework, the audience is intended
to include scientists and engineers with little or no background in category theory. Hence,
much of the paper is spent without reference to category theory, so the background (given in
Section 1.3) can be made fairly modest. The content of the paper begins in Section 2, where
we discuss four different interpretations of the box and wiring diagram syntax: discrete,
measurable, and continuous dynamical systems, as well as matrices. In Section 2.5, we preview
the classification function that extracts a matrix of steady states from a dynamical system, and
show that it is compositional with respect to serial wiring diagrams. We extend this to all
wiring diagrams in Section 4.4, where we also show that Euler’s method, of discretizing a
continuous dynamical system, is also compositional.

In order to get there, we need to formally define wiring diagrams and their composition
(Section 3); the category-theoretic idea is to use symmetric monoidal categories W. In Section 4,
we show that our four interpretations are lax monoidal functors W → Set. Bringing it down
to earth, our four interpretations (discrete, measurable, and continuous dynamical systems,
and matrices) are compositional with respect to wiring diagrams. Finally in Section 4.5 we
give an extended example.

1.3 Notation and Background

We define the set of extended natural numbers, denotedN+ B N∪{∞}; i.e.,N+ � {0, 1, 2, . . . ,∞}.
Similarly, the set of extended real numbers is R+ B R ∪ {∞}. Note that both N+ and R+ are
commutative semiringsmeaning that we can add and multiply elements in the usual way, where
a +∞ � ∞ for all a, and where a · ∞ equals 0 if a � 0 and equals∞ if a , 0. In fact, both are

Open dynamical systems and matrices 5

complete semirings meaning that one can add together any set I of elements
∑

i∈I ai ; see [DK09]
for details.

When we write X ∈ Set, we mean that X is a set. If X and Y are sets, we denote their
cartesian product by X × Y; it is the set of pairs {(x , y) | x ∈ X, y ∈ Y}. We denote their
coproduct—i.e., their disjoint union—by X + Y.

Given a set S, we define its count, denoted #S ∈ N+, to be the cardinality of S, if it is finite,
and∞ if it is infinite. Note that counts add and multiply correctly: #(X + Y) � (#X) + (#Y) and
#(X×Y) � (#X) · (#Y). By P(S)wemean the power set of S, i.e., the set of subsets P(S) � {U ⊆ S}.

We will briefly discuss measurable spaces in Section 2.2 and manifolds in Section 2.3,
but we will not need any advanced theory and will give all the necessary background and
references at that time. In Sections 3 and 4 we will use a small but significant amount of
category theory (Section 3.1). However, the extended example (Section 4.5) requires almost no
background.

2 Open dynamical systems and matrices

For a wiring diagram such as the one shown here

X1
X2

Y

(4)

there are many interpretations for what can inhabit each box. The implicit rule, however, is as
follows: given inhabitants of the interior boxes X1 and X2, the interconnection pattern yields a
"combined" inhabitant of the outer box Y. In this section, we discuss four such interpretations
of boxes and interconnections.

In Section 2.1 the inhabitants of each box are discrete dynamical systems, and we provide
formulas for how they can be combined in serial, parallel, splitting, and feedback diagrams
to form new dynamical systems. In Section 2.2 we briefly cover how this idea extends to
measurable spaces, so that the dynamical systems inhabiting each box change their state
and produce output in a more structured (namely, measurable) way. In Section 2.3 we
consider continuously changing dynamical systems (based on ordinary differential equations)
as the inhabitants of each box and give a formula for serial composition. For each of the
interpretations, we will eventually give composition formulas for every possible wiring
diagram and show (in Section 4) that these formulas are self-consistent, i.e., that they support
nesting systems of systems.

In Section 2.4, we discuss matrices, in the same context. While probably more familiar,
readers may not be aware that matrices serve as another compositional interpretation of the
boxes in wiring diagrams such as (4). For example, we can associate matrix multiplication to

2.1. Discrete dynamical systems 6

serial composition, matrix tensor (i.e., Kronecker) product to parallel composition, etc. The
check that these formulas are consistent under nesting is again relegated to Section 4. Finally,
in Section 2.5 we briefly look at the steady-state classification, which compositionally produces
a matrix from a dynamical system.

2.1 Discrete dynamical systems

Definition 2.1. Let A, B ∈ Set be sets. We define a (A, B)-open discrete dynamical system, or
(A, B)-discrete system for short, to be a triple (S, f rdt , f upd), where

• S ∈ Set is a set, called the state set,
• f rdt : S → B is a function, called the readout function, and
• f upd : A × S → S is a function, called the update function.

We call A the input set and B the output set in this case. An initialized (A, B)-discrete system is a
four-tuple (S, s0 , f rdt , f upd), where (S, f rdt , f upd) is a discrete system and s0 ∈ S is a chosen
element, called the initial state.

Let DS(A, B) denote the set of all (A, B)-discrete systems, and let DS∗(A, B) denote the set
of all initialized (A, B)-discrete systems.

Remark 2.2. The box A B will have many different interpretations in this paper, including
discrete, measurable, and continuous dynamical systems, as well as matrices (see also
Sections 2.2, 2.3, and 2.4). For discrete systems, we will think of this box as being inhabited by
an (A, B)-discrete system, where A is the input set and B is the output set. Similarly, the box
A
B C can be inhabited by (A × B, C)-discrete systems.

Remark 2.3. An initialized (A, B)-discrete system is the same thing as aMooremachine [Moo56]
with input alphabet A and output alphabet B. It is also what Alan Turing called a discrete state
machine [Tur50].

Definition 2.4. Let A, B ∈ Set be sets, and let F � (S, f rdt , f upd) be an (A, B)-discrete system.
For a ∈ A and b ∈ B, define an (a , b)-steady state to be a state s ∈ S such that f upd(a , s) � s and
f rdt(s) � b. We denote the set of all (a , b)-steady states by

Stst(F)a ,b B
�
s ∈ S

�
f rdt(s) � b , f upd(a , s) � s

	

and its count by Stst(F)a ,b B #Stst(F)a ,b .

Example 2.5. Let A � {T, F} and B � {Red, Green, Blue}. Below is a small example of an
(A, B)-discrete system (i.e., a possible inhabitant of the box A B), shown both in tabular

2.1. Discrete dynamical systems 7

form and as a transition diagram.

Input State Readout Next state
T 1 Blue 2
F 1 Blue 1
T 2 Red 2
F 2 Red 3
T 3 Green 4
F 3 Green 4
T 4 Blue 1
F 4 Blue 4

�

State: 1
Readout: Blue

State: 2
Readout: Red

State: 3
Readout: Green

State: 4
Readout: Blue

T

FF

T

T

F T

F

(5)

The state set is S � {1, 2, 3, 4}. The "Readout" column depends only on the state; it represents
the function f rdt : S → B. The "Next state" column depends on the input and the state; it
represents the update function f upd : A × S → S.

Example 2.6. Let (S1 , f rdt1 , f upd1) and (S2 , f rdt2 , f upd2) be discrete systems on X1 and X2 respec-
tively. Here we define their serial composition (T, 1rdt , 1upd) on Y, shown diagrammatically
below:

X1 X2

Y
A B C

To begin, suppose that the following four functions have been defined:

f rdt1 : S1 → B f upd1 : A × S1 → S1

f rdt2 : S2 → C f upd2 : B × S2 → S2
(6)

Define T B S1 × S2, so that a state of the system is a pair (s1 , s2), where s1 ∈ S1 and s2 ∈ S2.
Define the required functions for the composed system as follows:

1rdt : S1 × S2 → C 1upd : A × S1 × S2 → S1 × S2

1rdt(s1 , s2) B f rdt2 (s2) 1upd(a , s1 , s2) B
(

f upd1 (a , s1), f upd2
�

f rdt1 (s1), s2�)
Example 2.7. Let (S1 , f rdt1 , f upd1) and (S2 , f rdt2 , f upd2) be discrete systems on X1 and X2 respec-
tively. Here we define their parallel composition (T, 1rdt , 1upd) on Y, shown diagrammatically

2.1. Discrete dynamical systems 8

below:

X1

X2

Y
A1

A2

B1

B2

Suppose that the discrete systems on X1 and X2 have been defined, analogously to as in (6).
Define T B S1 × S2, and define the required functions as follows:

1rdt : S1 × S2 → B1 × B2 1upd : A1 × A2 × S1 × S2 → S1 × S2

1rdt(s1 , s2) B �
f rdt1 (s1), f rdt2 (s2)� 1upd(a1 , a2 , s1 , s2) B �

f upd1 (a1 , s1), f upd2 (a2 , s2)�

Example 2.8. Let (S, f rdt , f upd) be a discrete system on X. Here we show what happens
when wires split, in one of two ways, to form a discrete system (T, 1rdt , 1upd) on Y, as shown
diagrammatically below:

X

Y

A
B

B

X

Y
A

A

B

Suppose that the discrete system for X has been defined, analogous to that of f1 in (6). In each
case, define T B S. For the left-hand (split-after X) case, define the required functions as
follows:

1rdt : S → B × B 1upd : A × S → S
1rdt(s) B �

f rdt(s), f rdt(s)� 1upd(a , s) B f upd(a , s)
For the right-hand (split-before X) case, define the required functions as follows:

1rdt : S → B 1upd : A × S → S
1rdt(s) B f rdt(s) 1upd(a , s) B f upd(a , a , s)

Example 2.9. Let (S, f rdt , f upd) be a discrete system on X. Here we show what happens when
there is feedback, to form a discrete system (T, 1rdt , 1upd) on Y, as shown diagrammatically
below:

X

Y

A B

C C

To begin, suppose that the following functions have been defined:

f rdt : S → B × C f upd : A × C × S → S

2.2. Measurable dynamical systems 9

We will need to refer to the coordinate projections f rdtB : S → B and f rdtC : S → C of f rdt, i.e.,
where f rdt � (f rdtB , f rdtC). Then define T B S, and define the required functions as follows:

1rdt : S → B 1upd : A × S → S
1rdt(s) B f rdtB (s) 1upd(a , s) B f upd

�
a , f rdtC (s), s�

Discrete systems act as stream processors

It is easy to see that initialized discrete systems can transform streams of input into streams of
output. We briefly explain how this works. Suppose we have an initialized (A, B)-discrete
system (S, s0 , f rdt , f upd) inhabiting A B. Given an input stream (a0 , a1 , a2 . . .) we can
produce an state stream (s0 , s1 , s2 , . . .), where

si+1 � f upd(ai , si)
and hence an output stream (b0 , b1 , b2 , . . .), where bi � f rdt(si).
Example 2.10. Consider the discrete system (S, f rdt , f upd) given in Example 2.5, and say that
the initial state is State 1. Using the formula above, this initialized (A, B)-discrete system can
process any stream in A � {T, F} and produce an output stream in B � {Red, Blue, Green}.

For example, let σ � [T, T, F, T, F] ∈ Strm(A) be an input stream. From it, the initialized
discrete system of (5) produces the state stream

(State 1, State 2, State 2, State 3, State 4, State 4)
and outputs the B-stream

(Blue, Red, Red, Green, Blue, Blue).

2.2 Measurable dynamical systems

A slight modification of Definition 2.1 is useful, so that we are able to measure steady states
more generally than merely by counting them. To do this, we need just a bit of measure theory.
We loosely follow [Bog07]. Readers with less advanced mathematical background are invited
to skim or skip to Section 2.4.

Definition 2.11. Let X be a set, and P(X) its set of subsets. A σ-algebra on X is a subset
Σ ⊆ P(X) that contains the empty set, is closed under taking complements, and is closed
under taking countable unions. A measurable space is a pair (X,Σ), where X is a set and Σ is a
σ-algebra on X. A measurable function from (X,ΣX) to (Y,ΣY) is a function f : X → Y such that
if V ∈ ΣY is measurable then its preimage f −1(V) ∈ ΣX is also measurable.

A measurable space is called countably-separated if there is a countable subset A ⊆ Σ such
that: if x , y ∈ X are distinct points then there exists A ∈ A such that x ∈ A and y < A. We
define the category of countably-separated measurable spaces, which we denote CSMeas, to have
countably-separated measurable spaces as objects and measurable functions as morphisms. If
S is equipped with a measure µ : Σ→ R+, we call it a countably-separated measure space.

2.2. Measurable dynamical systems 10

What makes CSMeas a good category for us is that it is closed under finite products and
that one can measure fixed point (steady state) sets.

Proposition 2.12. The category CSMeas of countably-separated measurable spaces has the following
properties:

1. If T is a second-countable Hausdorff topological space (e.g., a manifold) then its Borel measurable
space is countably-separated, (T,ΣT) ∈ CSMeas.

2. The category CSMeas is closed under taking finite (in fact, countable) products.
3. For any object X ∈ CSMeas and element x ∈ X, the singleton {x} is measurable.
4. For any object X ∈ CSMeas, the diagonal X ⊆ X × X is measurable.
5. If f : X → X is a morphism in CSMeas then the fixed point set {x ∈ X | f (x) � x} ⊆ X is

measurable.

Proof. We go through each in turn.
1. Let A′ be the countable base of open sets in X, and let A � A′ ∪ {(X −U) | U ∈ A′} be

its union with the complementary (closed) subsets of X. Then A separates points in X.
2. See [Fre06, 343H.(v)].
3. See [Bog07, Theorem 6.5.7].
4. See [Bog07, Theorem 6.5.7].
5. The graph Γ(f) : X → X × X of f , sending x to (x , f (x)), is measurable by (2), and the

fixed point set is the preimage of the diagonal, which is measurable by (4).
�

Definition 2.13. Let A, B ∈ CSMeas be countably-separated measurable spaces. Define an
(A, B)-open measurable dynamical system or (A, B)-measurable system for short, to be a four-tuple
(S, µ, f rdt , f upd), where

• (S, µ) is a countably-separated measure space, called the state space,
• f rdt : S → B is a measurable function, called the readout function, and
• f upd : A × S → S is a measurable function, called the update function.

Let MS(A, B) denote the set of (A, B)-measurable systems.

Every measurable system has an underlying discrete system (see Definition 2.1). Thus we can
define initialized measurable systems by including an initial state s0 ∈ S in the data above,
and these can serve as stream processors as in Example 2.10. The steady states of a measurable
system are the same as those of its underlying discrete system (Definition 2.4.

Remark 2.14. We can recover Definition 2.1 fromDefinition 2.13 when A, B, and S are countable
sets. In this case, considering them as discrete topological spaces, which are always Hausdorff,
A, B, and S will also be second countable. Then S can be given the counting measure, and
every function between discrete measurable spaces is measurable.

Serial, parallel, splitting, and feedback composition for measurable systems works exactly
as they do for discrete systems (see Section 2.1), as will be shown formally in Section 4.

2.3. Continuous dynamical systems 11

2.3 Continuous dynamical systems

By Eucwe mean the category of finite dimensional Euclidean spaces Rn , where n ∈ N, and
smooth maps between them. Each such Euclidean space S has the structure of a manifold, an
in particular has a tangent bundle TS � S × S [War83]. A point in TRn is a pair (p , v) where
p ∈ Rn is a point and v ∈ Rn is a vector emanating from that point. There is a smooth projection
function πS : TS → S for any S ∈ Euc, given by πS(p , v) � p.

A smooth function f : S → TS assigns to each point p ∈ S a pair f (p) � (q , v), i.e., a vector
at some possibly different point q ∈ S. Requiring it to be the same point, p � q, is the same as
requiring that πS ◦ f � idS, in which case f is called a vector field on S.

Let A ∈ Euc be another Euclidean space. An A-parameterized vector field on S is a smooth
function f : A × S → TS such that f (a , p) � (q , v) where p � q. This is summarized in the
following commutative diagram, where prS : A × S → S is the coordinate projection:

A × S TS

S

f

prS

πS (7)

A vector field can be identified with a R0-parameterized vector field, in which case prS � idS.
Concretely, we may denote an A-parameterized vector field f : A × Rn

→ TRn by

ẋ1 � f1(a , x1 , . . . , xn),
ẋ2 � f2(a , x1 , . . . , xn), (8)
...

ẋn � fn(a , x1 , . . . , xn)

where each fi : Rn
→ R is a smooth function and where ẋi means dxi

dt .
The following definition has been adapted from [VSL15], where the authors consider open

continuous dynamical systems andwiring diagrams. We use the term "state space" rather than
the more typical "phase space", to fit with the nomenclature for discrete dynamical systems.
We refer the reader to [Str94] for more on dynamical systems.

Definition 2.15. Let A, B ∈ Euc be Euclidean spaces. We define a (A, B)-open continuous
dynamical system, or (A, B)-continuous system for short, to be a triple (S, f rdt , f upd), where

• S ∈ Euc is a Euclidean space, called the state space,
• f rdt : S → B is a smooth function, called the readout function, and
• f upd : A × S → TS is an A-parameterized vector field on S as in (8).

Let CS(A, B) denote the set of all (A, B)-continuous systems.

For a continuous system (S, f rdt , f upd), we sometimes refer to f upd as the update function,
because the time-derivative serves the same sort of role as the update function does for discrete

2.3. Continuous dynamical systems 12

systems. Recall that, given a continuous system such as the one shown in (8) and a parameter
a ∈ A, a tuple (x1 , . . . , xn) is called a steady state, or equilibrium, if all derivatives vanish
ẋi � 0 there, i.e., fi(a , x1 , . . . , xn) � 0 for all 1 ≤ i ≤ n.

Example 2.16. Let (S1 , f rdt1 , f upd1) and (S2 , f rdt2 , f upd2) be continuous systems on X1 and X2,
respectively. Here we define their serial composition (T, 1rdt , 1upd) on Y, shown diagrammati-
cally below:

X1 X2

Y
A B C

To begin, suppose that the following four functions have been defined:

b � f rdt1 (x1) ẋ1 � f upd1 (a , x1)
c � f rdt2 (x2) ẋ2 � f upd2 (b , x2)

Here x1 and x2 are variables representing state vectors of arbitrary dimensions n1 and n2. The
state variables for Y are x1 and x2. The required formulas for Y are:

ẋ1 � f upd1 (a , x1)
c � f rdt2 (x2) ẋ2 � f upd2

�
f rdt1 (x1), x2

�

The examples for parallel, splitting, and feedback compositions are similarly adapted from
Examples 2.7, 2.8, and 2.9, and a complete formula will be given in Section 4.

Steady states and ε-approximation of continuous systems

Regarding a continuous system in terms of its discrete approximation is compositional—it
respectswiringdiagramsof all sorts—aswill be shown inTheorem4.20. Another compositional
mapping is to regard each continuous system in terms of its bifurcation diagram. We will
introduce these topics now, though the idea will be fleshed out in Section 4.

Construction 2.17. Let A and B be spaces, and let |A| and |B | be their underlying sets. Let
f � (S, f rdt , f upd) be an (A, B)-continuous system. Then for any real number ε > 0 we can
construct an (|A|, |B |)-discrete system (|S|, f rdtε , f updε), called the ε-approximation of f as follows.
For readouts define f rdtε B f rdt, and for updates use Euler’s method:

f updε (a , x) B x + ε · f upd(a , x).
Definition 2.18. Let A, B ∈ Euc be Euclidean spaces, and let F � (S, f rdt , f upd) be an (A, B)-
continuous system. For a ∈ A and b ∈ B, define an (a , b)-steady state to be a state s ∈ S such
that f upd(a , s) � 0 and f rdt(s) � b. We denote the set of all (a , b)-steady states by

Stst(F)a ,b B
�
s ∈ S

�
f rdt(s) � b , f upd(a , s) � 0

	

and its count by Stst(F)a ,b B #Stst(F)a ,b .

2.4. Matrices (and wiring diagrams) 13

Remark 2.19. In case it is not clear, Definition 2.18 is strongly related to the notion of bifurcation
diagrams [Str94], as we now explain.

Let A, S ∈ Euc be Euclidean spaces, and let f upd : A × S → S be smooth. Suppose we take
B � S, so the readout function can be the identity, f rdt � idB, and let F � (S, f rdt , f upd), so
we have Stst(F) : A × B → N+. However, for any (a , b) ∈ A × B, the number of steady states
Stst(F)(a , b) is either zero or one, because f rdt is injective. Thus the set of steady states can be
drawn on an A × B coordinate system, by plotting a point at (a , b) if and only if it is a steady
state (or equilibrium). This almost gives the bifurcation diagram of the system, the exception
being that it does not address stability issues. A major thrust of this paper is to show that
when these bifurcation diagrams are considered as matrices (see Corollary 4.27), they can be
composed by matrix arithmetic when the corresponding dynamical systems are coupled via a
wiring diagram. The matrix arithmetic of which we speak is discussed next, in Section 2.4.

2.4 Matrices (and wiring diagrams)

We can also interpret boxes in a wiring diagram as being inhabited by matrices, whereby
serial composition corresponds to matrix multiplication, etc. In this section we give several
examples; a complete formula is given in Section 4. Recall the notion of complete semiring
R from Section 1.3; two examples are N+ and R+, the extended natural and real numbers,
respectively.

Definition 2.20. Let R be a complete semiring. For sets A, B, define an (A, B)-matrix in R to
be a function M : A × B → R. For elements a ∈ A and b ∈ B, we refer to M(i , j) ∈ R as the
(i , j)-entry, and often denote it Mi , j . We denote the set of (A, B)-matrices of extended natural
(resp. real) numbers by MatR(A, B). By default, we write Mat(A, B) when R � N+.

Remark 2.21. If A and B are finite sets, then a choice of total order on A and B is the same thing
as a pair of bĳection A � {1, 2, . . . ,m} and B � {1, 2, . . . , n}. This identification allows us to
show the matrix as an array in the usual fashion:

*......
,

M1,1 M1,2 · · · M1,n

M2,1 M2,2 · · · M2,n
...

...
. . .

...

Mm ,1 Mm ,2 · · · Mm ,n

+//////
-

In Definitions 4.8 and 4.15 we will give definitions for matrix manipulations (such as multipli-
cation, Kronecker product, and trace) that are independent of ordering.

2.4. Matrices (and wiring diagrams) 14

Example 2.22. We will give examples of matrices M1 and M2 inhabiting X1 and X2 and their
serial composition N inhabiting Y, shown diagrammatically below:

X1 X2

Y
A B C

Suppose that |A| � 2, |B | � 2, |C | � 3, and let M1 and M2 be the following matrices:

M1 B *
,

1 2
3 0

+
-

M2 B *
,

2 2 0
3 1 1

+
-

Then their serial composition is just the usual matrix product N � M1M2,

N � *
,

8 4 2
6 6 0

+
-

Example 2.23. We will give examples of matrices M1 and M2 inhabiting X1 and X2 and their
parallel composition N inhabiting Y, shown diagrammatically below:

X1

X2

Y
A1

A2

B1

B2

Suppose that |A1 | � 2, |B1 | � 2, |A2 | � 3, and |B2 | � 2, and let M1 and M2 be the following
matrices:

M1 B *
,

1 2
3 0

+
-

M2 B
*...
,

2 2
3 1
1 0

+///
-

Then N � M1 ⊗M2 is the Kronecker product [SH11],

N �

*...........
,

2 2 4 4
3 1 6 2
1 0 2 0
6 6 0 0
9 3 0 0
3 0 0 0

+///////////
-

2.4. Matrices (and wiring diagrams) 15

Example 2.24. We will give examples of matrices M1 and M2 inhabiting X1 and X2 and their
splitting compositions N1 and N2 inhabiting Y1 and Y2, shown diagrammatically below:

X1

Y1

A
B

B

X2

Y2

A

A

B

Suppose that |A| � 2, |B | � 3, and let M1 and M2 be the following matrices (the vertical and
horizontal bars below are only for ease of reading block matrices):

M1 B *
,

1 2 4
3 1 1

+
-

M2 B

*.....
,

1 2 1
3 0 1
2 1 2
0 1 4

+/////
-

Then N1 and N2 are the matrices below:

N1 B *
,

1 0 0 0 2 0 0 0 4
3 0 0 0 1 0 0 0 1

+
-

N2 B *
,

1 2 1
0 1 4

+
-

Example 2.25. We will give examples of a matrix M inhabiting X and its feedback composition
N inhabiting Y, shown diagrammatically below:

X

Y

A B

C C

Suppose that |A| � 2, |B | � 3, and |C | � 2, and let M be the following matrix:

M B

*.....
,

1 2 4 1 0 3
3 1 1 2 1 0
1 2 1 0 3 2
0 1 2 3 4 2

+/////
-

Then N � TrC
A,B(M) is the partial trace matrix, given by adding diagonals of each square block,

as shown below:

N B *
,

2 6 0
2 4 5

+
-

In general, if M is a (K×I)×(K× J)-matrix, its K-partial trace, denoted TrK
I , J is the (I× J)-matrix

given by adding up the K-blocks; it is given explicitly by the formula

TrK
I , J(M)i , j B

∑
k∈K

M(k ,i),(k , j). (9)

2.5. Introducing the compositionality of steady states 16

2.5 Introducing the compositionality of steady states

The classifying function Q : DS→ Mat sends each discrete (or measurable) system to a matrix.
What makes it interesting is that it is preserved under each type of composition: serial, parallel,
splitting, and feedback. In other words, the matrix is a summary of the discrete system, but
one that can be used losslessly in future computations.

Definition 2.26. Let F � (S, f rdt , f upd) be an (A, B)-discrete system. For a ∈ A and b ∈ B,
recall the set of (a , b)-steady states from Definition 2.4 and its count

Stst(F)a ,b � #{s ∈ S | f rdt(s) � b and f upd(a , s) � s}
We can consider this as a matrix Stst(F) ∈ Mat(A, B), which we call the steady state matrix of F.

Example 2.27. Let A � {T, F} and B � {Red, Green, Blue}. In Example 2.5 we wrote out an
example of an (A, B)-discrete system F1 � (S1 , f rdt1 , f upd1). In this example, we put it in serial
composition with a (B, C)-discrete system, where C � {Up, Down}, and discuss the resulting
system in terms of steady states.

X1 X2

Y
A B C

For the second box, define F2 � (S2 , f rdt2 , f upd2) as shown here:

Input State Readout Next state
Red p Up p
Blue p Up p
Green p Up q
Red q Down p
Blue q Down r
Green q Down q
Red r Up q
Blue r Up r
Green r Up p

State: p
Readout: Up

State: r
Readout: Up

State: q
Readout: Down

Green

Red

BlueRed
Green

Red

Blue

Green

Blue

(10)
When the two systems are composed in series, the resulting system has twelve states (e.g.,
(2,p)), is driven by inputs in {T, F}, and produces output values in {Up, Down}. We will not
write the system out here, but instead compute its matrix of steady states. Note that steady
states appear as loops in (10).

As will be discussed more formally in Section 2.5, the matrix associated to such a system
organizes each of its steady states in terms of

• the inputs that it is fixed by, and
• the signal that it outputs.

Category-theoretic formulation of wiring diagrams 17

Thus the steady state matrix for the discrete system above presents the number of steady
states for each (fixed by, output) combination:

Outputs:
Is fixed by: Up Down

Red 1 0
Blue 2 0
Green 0 1

i.e.,
*...
,

1 0
2 0
0 1

+///
-

The steady states of the discrete system shown in (5) are summarized by the following matrix:

Outputs:
Is fixed by: Red Blue Green

T 1 0 0
F 0 2 0

i.e., *
,

1 0 0
0 2 0

+
-

Serial composition of discrete systems was discussed in Example 2.6. One can check that it
has 12 states, five of which are steady states, but doing so can be tedious, and if there weremore
than two inner boxes it would only get more difficult, as we will see in the extended example
in Section 4.5. The compositionality of the steady state function says that we can compute the
steady state matrix for the combined system by multiplying the matrices associated to the
subsystems. Indeed, multiplying the above matrix by that from Example 2.5, we have

*
,

1 0 0
0 2 0

+
-

*...
,

1 0
2 0
0 1

+///
-

� *
,

1 0
4 0

+
-

The combined system indeed has five steady states, one of which outputs ’Up’ and the other
four of which output ’Down’. We know that all of these occur when the input is ’T’; an input
of ’F’ results in no steady states.

We will not give examples for the other kinds of composition, e.g., parallel and feedback
composition here. However, we will give a complete formula in Section 4.

3 Category-theoretic formulation of wiring diagrams

In this section, we explain how wiring diagrams are expressed using sets and functions. The
idea is that there are sets of ports—input and output for each box—and there are functions
that specify how one port is fed by another. The only technicality is dealing with the fact that
each port carries a certain alphabet of symbols, and we will need to take them into account.
For example, if one port is connected to another, the two should be using the same alphabet.

In order to make these ideas precise, we use the language of category theory. We begin
with a very brief background section.

3.1. Category theory references 18

3.1 Category theory references

We assume the reader is familiar with the basic definitions of category theory, namely categories,
functors, and natural transformations. For example, we will often consider Set, the category of
sets and functions, as well as functors C→ Setwhere C is some other category.

Just to fix notation, we recall some basic definitions. A category C comes with a set Ob C

of objects. If X,Y ∈ C are objects, the pair is assigned a set C(X,Y) ofmorphisms; if f ∈ C(X,Y)
is a morphism, it may be denoted f : X → Y. The category also has an identity idX ∈ C(X,X)
for each object X and a composition formula ◦ : C(Y, Z) × C(X,Y)→ C(X, Z). We may write
X ∈ C in place of X ∈ Ob C, e.g., we have been writing X ∈ Set. Similarly, if X ∈ Set is a set,
we may write X → C to denote a function X → Ob C.

Some categories, such as Set, are closed under taking finite products, denoted ×; we call
such categories finite product categories. In fact Set is also closed under taking finite coproducts
(called disjoint unions and denoted +). We refer the reader to [ML98], [Awo10], or [Spi14] (in
decreasing order of difficulty) for background on all the above ideas.

Both products and coproducts are examples of monoidal structures on Set. We will be
interested in monoidal structures on other categories. We will also use lax monoidal functors,
which are functors that interact coherently with monoidal structures. We refer the reader
to [Lei04] for specific background on monoidal structures and lax monoidal functors. See
also [VSL15] for a paper on wiring diagrams and continuous dynamical systems that uses the
above ideas.

The category theory we use in this paper is not very sophisticated, and readers who
are unfamiliar with category theory are encouraged to lightly skim those areas—such as
Section 3.2—which are purely about setting up categorical machinery, and focus instead on
examples. The paper concludes with an extended example in Section 4.5.

3.2 Typed finite sets and their dependent products

We first want to define formally what we mean by boxes of arbitrary shape, e.g.,

X
A1
A2

B1
B2
B3 (11)

where A1, A2, B1, B2, and B3 are sets, measurable spaces, or Euclidean spaces. To do so, we
now introduce the notion of typed finite sets.

Typed finite sets

The categories Set, Euc, and CSMeas are finite product categories, as discussed in Section 3.1.

3.2. Typed finite sets and their dependent products 19

Definition 3.1. Fix a finite product category C. The category of C-typed finite sets, denoted
TFSC, is defined as follows. An object in TFSC is a finite set of objects in C,

TFSC :� {(P, τ) | P ∈ FinSet, τ : P → C)}.

If P � (P, τ) is a typed finite set, we call an element p ∈ P a port; we sometimes write p ∈ P
by abuse of notation. We call the object τ(p) ∈ C the type of port p. If P � {1, 2, . . . , n} for
some n ∈ N, it is often convenient to denote (P, τ) by the sequence 〈τ(1), . . . , τ(n)〉. There is a
unique typed finite set with an empty set P � ∅ of ports, which we denote by 0 B 〈 〉.

A morphism γ : (P, τ)→ (P′, τ′) in TFSC consists of a function γ : P → P′ which respects
types in the sense that for every p ∈ P one has τ′

�
γ(p)� � τ(p), i.e., such that the following

diagram of finite sets commutes:
P P′

C

γ

τ τ′

We refer to the morphisms of TFSC as C-typed functions. We may elide the reference to C if it
is clear from context.

Given two typed finite sets, P1 B (P1 , τ1) and P2 B (P2 , τ2), we can form their sum
P1 + P2 B (P1 + P2 , τ1 + τ2), where P1 + P2 is the disjoint union of P1 and P2, and τ1 + τ2 is
equal to τi when restricted to Pi , for i � 1, 2. Thus we have a symmetric monoidal structure on
TFS, where the monoidal unit is 0.

Example 3.2 skips ahead a little to show what we are building toward.

Example 3.2. Suppose the five labels (A1 ,A2 , B1 , B2 , B3) below refer to objects in some category
C.

X
A1
A2

B1
B2
B3

The left-hand (input) side and the right-hand (output) side of box X can be represented by the
typed finite sets

Xin
� 〈A1 ,A2〉 and Xout

� 〈B1 , B2 , B3〉 (12)

respectively. There are many ways to break X up into the sum of smaller boxes while
maintaining the C-labels of each wire. For example,

X
A1
A2

B1
B2
B3

�

X1

�

X2

A1

A2

B1
B2

B3

�

X′1
�

X′2
A1
A2

B1

B2
B3

� etc.... (13)

This will be made precise in Definition 3.6.

3.3. The monoidal category W of wiring diagrams 20

Dependent product of a typed finite set

Having multiple ports is useful for allowing different sorts of information to flow around
within a wiring diagram. However, it terms of dynamical systems, having three input ports
〈A, B, C〉 is the same as having one input port A×B×C. The next definition simply formalizes
this notion, and a similar one for morphisms of typed finite sets.

Definition 3.3. Let C be a finite product category, and suppose that P B (P, τ) ∈ TFSC is a
typed finite set. Its dependent product P̂ ∈ C is defined as the product in C,

E(P, τ) :�
∏
p∈P

τ(p).

Given a typed function γ : (P, τ)→ (P′, τ′) in TFSC we define

γ̂ : F(P′, τ′)→ E(P, τ)
using the universal property of products in the evident way. For example, suppose that
P � {1, . . . , p} and P′ � {1, . . . , p′} are finite ordinals. Then γ̂ is given on an element
(a1 , . . . , ap′) ∈ F(P′, τ′) by the formula

γ̂(a1 , . . . , ap′) B (aγ(1) , . . . , aγ(p)). (14)

It is easy to check that dependent product defines a functor,

·̂ : TFSop
C
→ C.

Lemma 3.4. The dependent product functor sends coproducts in TFSC to products in C. That is, we
have a natural isomorphism

P̂1 × P̂2 � FP1 + P2.

Example 3.5. Consider Example 3.2. The dependent products of the sets in (12) are

X̂in � A1 × A2 and X̂out � B1 × B2 × B3

and similarly X̂in � X̂in
1 × X̂in

2 and X̂out � X̂out
1 × X̂out

2 in (13).

3.3 The monoidal category W of wiring diagrams

Definition 3.6. Let C be a finite product category. A C-box X (called simply a box if C is clear
from context) is an ordered pair of typed finite sets,

X � (Xin ,Xout) ∈ TFSC × TFSC.

We refer to elements a ∈ Xin and a′ ∈ Xout as input ports and output ports, respectively.
Given two boxes X1 ,X2, we define their sum (or parallel composition), denoted X1 � X2, by

(X1 � X2)in B Xin
1 + Xin

2 (X1 � X2)out B Xout
1 + Xout

2

3.3. The monoidal category W of wiring diagrams 21

We define the closed box, denoted �, to be the box with an empty set of input and output ports,

� B (0, 0).

If X is a box, we denote by X̂ the pair (X̂in , X̂out) ∈ C × C. Similarly, denote

X̂1 � X̂2 B
(
X̂in

1 × X̂in
2 , X̂

out
1 × X̂out

2

)
.

Remark 3.7. By Lemma 3.4, there is an isomorphism GX1 � X2 � X̂1 � X̂2, and there is an
isomorphism �̂ � (1, 1), where 1 denotes any one-element set.

The following definition is relative to a choice C of finite product category. That is,
wherever we write "function", we mean one that respects type functions τ in the sense of
Definition 3.1.

Definition 3.8. Let X � (Xin ,Xout) and Y � (Yin ,Yout) be boxes. A wiring diagram ϕ : X → Y
is a pair (f in , f out) of functions

ϕin : Xin
→ Yin + Xout (15)

ϕout : Yout
→ Xout

Define the identity wiring diagram, denoted idX : X → X, by setting (idX)in to be the coproduct
inclusion Xin

→ Xin + Xout, and setting (idX)out to be the identity function, Xout
→ Xout.

Given wiring diagrams ϕ1 : X1 → Y1 and ϕ2 : X2 → Y2, we define their sum, denoted
ϕ1 � ϕ2, by using the cocartesian monoidal structure on FinSet:

(ϕ1 � ϕ2)in B ϕin
1 + ϕin

2 (ϕ1 � ϕ2)out B ϕout
1 + ϕout

2

Example 3.9. Consider the wiring diagram shown to the right below. It is obtained by taking
the monoidal product of—i.e., putting in parallel—the inner boxes, X � X1 � X2. Thus it is
equivalent to the "operadic" diagram shown on the left:

X1

X2

Y
a
b

c

d

e
f

1

h

i

j

k
X1

X2

X

Y

a

b

c

d

e

f

1

h

i

j

k

(16)

The right-hand picture shows a wiring diagram ϕ : X → Y in the sense of Definition 3.8.1 The
functions ϕin : Xin

→ Xout + Yin and ϕout : Yout
→ Xout defining ϕ, as in (15), are shown in

1Inside the box labeled X we have faintly drawn X1 and X2, because X � X1 � X2; however, the morphism
ϕ : X → Y does not refer to these inner boxes.

3.3. The monoidal category W of wiring diagrams 22

the following table:

port ∈ Xin ϕin(port)
a h
b 1

c f
d i

port ∈ Yout ϕout(port)
j e
k 1 (17)

For example, the fact that wire 1 is shown splitting (feeding both b and k) in the wiring
diagram pictures above (16) corresponds to the fact that 1 appears twice, next to b and k, in
the tables (17).

Composition of wiring diagrams is visually straightforward. For example, the picture
below shows four wiring diagrams: two "interior" wiring diagrams ϕ1 : X11 ,X12 ,X13 → Y1

and ϕ2 : X21 ,X22 → Y2, an "exterior" wiring diagram ψ : Y1 ,Y2 → Z (shown again on the
right):

X11 X12

X13

X21

X22

Y1

Y2

Z

Y2

Y1

Z

From ϕ1 , ϕ2, and ψ, we can erase the dashed boxes and derive a five-box wiring diagram
X11 ,X12 ,X13 ,X21 ,X22 → Z. We call it their composition and denote it ω � ψ ◦ (ϕ1 , ϕ2). This
corresponds to the composition of X

ϕ
−→ Y

ψ
−→ Z in a symmetric monoidal category W as

described in Definition 3.10, where X � X11 + X12 + X13 + X12 + X22 and Y � Y1 + Y2.

Definition 3.10. Let C be a finite product category. Given wiring diagrams ϕ : X → Y and
ψ : Y → Z, we define their composition, denoted ψ ◦ ϕ : X → Z, by the following compositions
in TFSC:

Xin Zin + Xout

Yin + Xout

Zin + Yout + Xout Zin + Xout + Xout

ϕin

(ψ◦ϕ)in

ψin+Xout

Zin+ϕout+Xout

Zin+∇Xout

Zout Xout

Yout

(ψ◦ϕ)out

ϕout ψout

Four formal interpretations of wiring diagrams 23

It is straightforward to show that this composition formula is associative and unital. Thus we
have defined the category of C-boxes and wiring diagrams, which we denote WC. This category
has a symmetric monoidal structure (�,�), where � is the closed box and � is given by sums
of boxes and wiring diagrams, as in Definition 3.1.

Remark 3.11. A wiring diagram ϕ : X → Y, includes two functions ϕin , ϕout, which have as
dependent product the functions ϕ̂in , ϕ̂out (see Definition 3.3) as shown below:

ϕin : Xin
→ Yin + Xout ϕout : Yout

→ Xout

ϕ̂in : Ŷin × X̂out → X̂in ϕ̂out : X̂out → Ŷout

The proof of following lemma is a straightforward rewriting of Definition 3.10.

Lemma 3.12. Suppose given wiring diagrams ϕ : X → Y and ψ : Y → Z. Then the dependent
products G(ψ ◦ ϕ)in : Ẑin × X̂out → X̂in and G(ψ ◦ ϕ)out : X̂out → Ẑout are given by the formulas

G(ψ ◦ ϕ)in(z , x) � ϕ̂in
(
ψ̂in

�
z , ϕ̂out(x)�, x)

G(ψ ◦ ϕ)out(x) � ψ̂out
(
ϕ̂out(x))

4 Four formal interpretations of wiring diagrams

In this final section, we give precise formulas for putting together subsystems according
to an arbitrary wiring diagram, to form a larger system. These systems may be dynamical
systems of various kinds (discrete, measurable, continuous) or matrices; we call these our four
interpretations of wiring diagrams. One of them, namely continuous systems, is taken from
[VSL15]. Another, namely discrete systems, is loosely adapted from [SR13]. Technically, each
interpretation is a lax Set-valued functor on W, the category of wiring diagrams. Experts
may note that algebras on the operad of wiring diagrams appear related to traced monoidal
categories, and indeed they are; see [JSV96] and [SSR15].

We spell out how each interpretation works in several steps. In Section 4.1, we remind the
reader what is allowed to fill, or inhabit, a given box shape, for each of our interpretations.
In Section 4.2, we explain what happens when boxes are put into parallel. In fact, whenever
a wiring diagram includes several boxes, we use the technique of Example 3.9: First we put
them in parallel, and then we use a wiring diagram with one inner box (see Definition 3.8).
Thus we complete our description of our four interpretations in Section 4.3 by saying what
happens on wiring diagrams (with one inner box).

In Section 4.4 we give some compositional maps between interpretations. Most of these
have been briefly discussed earlier in the paper, but we make formal theorems here. We
conclude in Section 4.5 with an extended example.

4.1. Inhabitants of a box 24

4.1 Inhabitants of a box

Definitions 4.1, 4.2, 4.3, and 4.4 say precisely the set of inhabitants that are allowed to fill each
box X ∈ W (e.g., (11)), according to our four interpretations: discrete systems, measurable
systems, continuous systems, and matrices. In this section, we are simply recalling Definitions
from Section 2.

Definition4.1. Let C � Set and letX � (Xin ,Xout) ∈ WSet be aSet-box. DefineDS(X) B DS(X̂)
to be the set of (X̂in , X̂out)-discrete systems, as in Definition 2.1. That is,

DS(X) B {(S, f rdt , f upd) ��� S ∈ Set, f rdt ∈ Set
(
S, X̂out

)
, f upd ∈ Set

(
X̂in × S, S

)}

Definition 4.2. Let C � CSMeas and let X � (Xin ,Xout) ∈ WCSMeas be a CSMeas-box. Define
MS(X) B MS(X̂) to be the set of (X̂in , X̂out)-measurable systems, as in Definition 2.13. That is,

DS(X) B
{
(S, µ, f rdt , f upd)

�����

S ∈ CSMeas, µ is a measure on S,
f rdt ∈ Set

(
S, X̂out

)
, f upd ∈ Set

(
X̂in × S, S

) }
Definition 4.3. Let C � Set and let X � (Xin ,Xout) ∈ WEuc be a Euc-box. Define CS(X) B
CS(X̂) to be the set of (X̂in , X̂out)-continuous systems, as in Definition 2.15. That is,

CS(X) B {(S, f rdt , f upd) ��� S ∈ Euc, f rdt ∈ Euc
(
S, X̂out

)
, f upd ∈ Euc/S

(
X̂in × S, TS

)}

Recall that if S ∈ C is an object, then C/S denotes the slice category of C over S. We will
not need this again; it was used in Definition 4.3 simply as shorthand for the diagram (7).

Definition 4.4. Let C � Set, let R be a complete semiring, and let X � (Xin ,Xout) ∈ WSet be
a Set-box. Define MatR(X) B Mat(X̂) to be the set of (X̂in × X̂out)-matrices in R. This can be
identified with the set of functions

Mat(X) � {
M : X̂in × X̂out → R

}
.

4.2 Parallelizing inhabitants

In this section we explain for each of our four interpretations—discrete systems, measurable
systems, continuous systems, and matrices—how parallel composition works. One may refer
to Example 3.2 and Definition 3.6.

Definition 4.5. Suppose we are given discrete systems F1 � (S1 , f rdt1 , f upd1) ∈ DS(X1) and
F2 � (S2 , f rdt2 , f upd2) ∈ DS(X2). Their parallel composition, denoted by F1 � F2 � (T, 1rdt , 1upd) ∈
DS(X1 � X2) is given as follows. Its state set is the product T B S1 × S2 in Set, its readout
function 1rdt � (f1 � f2)rdt is the product

(f1 � f2)rdt B f rdt1 × f rdt2 : S1 × S2 → B1 × B2 ,

4.3. Wiring together inhabitants 25

and its update function 1upd � (f1 � f2)upd is, up to isomorphism, the product f upd1 × f upd2 as
shown here:

A1 × A2 × S1 × S2 S1 × S2

A1 × S1 × A2 × S2 S1 × S2

�

(f1� f2)upd

f upd1 × f upd2

Remark 4.6. Definition 4.5 also makes sense when F1 and F2 are assumed to be measurable
systems, i.e., we can form a measurable system F1 � F2, called their parallel composition, in the
identical way. In particular, the set S1 × S2 is given the product measure µ1 ⊗ µ2 (see [Fre06]).

Definition 4.7. Suppose we are given continuous systems F1 � (S1 , f rdt1 , f upd1) ∈ CS(X1) and
F2 � (S2 , f rdt2 , f upd2) ∈ CS(X2). Their parallel composition, denoted by F1 � F2 � (T, 1rdt , 1upd) ∈
CS(X1 � X2) is given as follows. Its state set is the product T B S1 × S2 in Euc, its readout
function 1rdt � (f1 � f2)rdt is the product

(f1 � f2)rdt B f rdt1 × f rdt2 : S1 × S2 → B1 × B2 ,

and its update function 1upd � (f1 � f2)upd is, up to isomorphism, the product f upd1 × f upd2 as
shown here:

A1 × A2 × S1 × S2 T(S1 × S2)

A1 × S1 × A2 × S2 TS1 × TS2

�

(f1� f2)upd

f upd1 × f upd2

�

Definition 4.8. Let R be a semiring. Suppose we are given R-matrices M1
∈ MatR(X1) and

M2
∈ MatR(X2). Their parallel composition, denoted by M1

⊗ M2
∈ MatR(X1 � X2) is given as

the Kronecker product, given by component-wise product (in R):

(M1
⊗M2)(i1 ,i2),(j1 , j2) B M1

i1 , j1
·M2

i2 , j2
(18)

4.3 Wiring together inhabitants

Any complex wiring diagram ϕ : X1 , . . . ,Xn → Y, such as the one shown in (3), can be
constructed by first putting the input boxes in parallel X � X1 � · · · � Xn as in Definition 3.6,
and then using a wiring diagram X → Y with a single inner box (see Example 3.9). For
each of our four interpretations (dynamical systems and matrices), the formula for putting
together inhabitants of N1 , . . . ,N6 to form an inhabitant of X is likewise done in these two
steps. Parallelizing inhabitants was discussed in Section 4.2 and how a single inhabitant,
wired into a larger box, produces an inhabitant of that larger box, is described in this section.

We not only give the formula, we also prove Theorems 4.10, 4.12, 4.14, and 4.18, which say
that these formulas are coherent for each of our four interpretations. More formally, we prove
they constitute lax monoidal functors.

4.3. Wiring together inhabitants 26

Discrete systems

Definition4.9. Letϕ : X → Y be awiringdiagram in WSet, and suppose that F � (S, f rdt , f upd) ∈
DS(X) is an X̂-discrete system. We define the DS-application of ϕ to F, denoted DS(ϕ)(F) ∈
DS(Y), to be the Ŷ-discrete system DS(ϕ)(F) � (T, 1rdt , 1upd) where

T � S, 1rdt(s) � ϕ̂out
�

f rdt(s)� , 1upd(y , s) � f upd
(
ϕ̂in

�
y , f rdt(s)� , s) (19)

Theorem 4.10. The assignments X 7→ DS(X) and ϕ 7→ DS(ϕ) define a symmetric monoidal functor
DS : WSet → Set.

Proof. We need to check that for any X
ϕ
−→ Y

ψ
−→ Z and discrete system F � (S, f rdt , f upd) ∈

DS(X), the following equation holds:

DS(ψ)�DS(ϕ)(F)� � DS(ψ ◦ ϕ)(F).
For ease of notation, let G � (T, 1rdt , 1upd) B DS(ϕ)(F), let H1 � (U1 , hrdt

1 , hupd
1) B DS(ψ)(G),

and let H2 � (U2 , hrdt
2 , hupd

2) B DS(ψ ◦ ϕ)(F). We want to show that H1 � H2.
It is easy to see that they have the same state set, U1 � U2 � S, and the same readout

function hrdt
1 � hrdt

2 � ψ̂out ◦ ϕ̂out ◦ f rdt. We compute the update functions and see they are the
same for any z ∈ Ẑin and s ∈ S:

hupd
1 (z , s) � 1upd (ψ̂in(z , 1rdt(s)�, s)

� f upd
(
ϕ̂in

(
ψ̂in

�
z , 1rdt(s)�, f rdt(s)) , s)

� f upd
(
ϕ̂in

(
ψ̂in

(
z , ϕ̂out

�
f rdt(s)�) , f rdt(s)

)
, s

)
� f upd

(G(ψ ◦ ϕ)in�
z , f rdt(s)�, s)

� hupd
2 (z , s)

where the penultimate equality is an application of Lemma 3.12, and the rest are merely
untangling (20).

We also need to check that DS is symmetric monoidal. This is straightforward; it follows
from the fact that taking dependent products is itself symmetric monoidal, sending coproducts
to products, as in Lemma 3.4.

�

Measurable systems

Definition 4.11. Let ϕ : X → Y be a wiring diagram in WCSMeas, and suppose that F �

(S, µ, f rdt , f upd) ∈ MS(X) is an X̂-measurable system. We define the MS-application of ϕ to
F, denoted MS(ϕ)(F) ∈ DS(Y), to be the Ŷ-measurable system MS(ϕ)(F) � (T, ν, 1rdt , 1upd)
where

(T, ν) � (S, µ), 1rdt(s) � ϕ̂out
�

f rdt(s)� , 1upd(y , s) � f upd
(
ϕ̂in

�
y , f rdt(s)� , s) (20)

4.3. Wiring together inhabitants 27

Theorem 4.12. The assignments X 7→ MS(X) and ϕ 7→ MS(ϕ) define a symmetric monoidal functor
MS : WCSMeas → Set.

Proof. The underlying set functor U : CSMeas→ Set is faithful; that is, for any measurable
functions f , 1 : X → Y, if they agree on underlying sets, U(f) � U(1) then they are equal
f � 1. Suppose F � (S, f rdt , f upd) ∈ MS(X). Checking that the equation

MS(ψ)�MS(ϕ)(F)� � MS(ψ ◦ ϕ)(F)
holds is a matter of checking that both sides have the same state space (they do: both are S)
and the same readout and update functions. Thus the functoriality follows from Theorem 4.10
by the faithfulness of U.

To see that MS is monoidal, notice that

MS(X) �
⊔

(S, f rdt , f upd)∈DS(X)
{µ | µ is a measure on S}.

Consider the functor CSMeas→ Set given by assigning the set of measures to a measurable
space. It is monoidal, using the product measure construction [Fre06], and the result follows.

�

Continuous systems

Definition 4.13. Let ϕ : X → Y be a wiring diagram in WEuc, and suppose that F �

(S, f rdt , f upd) ∈ CS(X) is an X̂-continuous system. We define the CS-application of ϕ to
F, denoted CS(ϕ)(F) ∈ CS(Y), to be the Ŷ-continuous system CS(ϕ)(F) � (T, 1rdt , 1upd)where

T � S, 1rdt(s) � ϕ̂out
�

f rdt(s)� , 1upd(y , s) � f upd
(
ϕ̂in

�
y , f rdt(s)� , s) (21)

Theorem 4.14. The assignments X 7→ CS(X) and ϕ 7→ CS(ϕ) define a symmetric monoidal functor
CS : WEuc → Set.

Proof. Although this Theroem takes place in a different context than that of Theorem 4.10,
namely that of continuous rather than discrete dynamical systems, the formulas (20) and (21)
are identical, and one can check that a virtually identical proof suffices here.

�

Matrices

Definition 4.15. Let ϕ : X → Y be a wiring diagram in WSet, and suppose that M ∈ Mat(X) is a
(X̂in × X̂out)-matrix. We define the Mat-application of ϕ to M, denoted N � Mat(ϕ)(M) ∈ Mat(Y),
to be the (Ŷin × Ŷout)-matrix with (i , j)-entry

Ni , j �
∑

k∈(ϕ̂out)−1(j)
Mϕ̂in(i ,k),k (22)

for any i ∈ Ŷin and j ∈ Ŷout.

4.3. Wiring together inhabitants 28

Example 4.16. We want to show that the formula in Definition 4.15 reduces to the usual matrix
multiplication formula in the case of serial composition. We begin by converting our serial
composition diagram into a single-inner-box wiring diagram by parallelizing, as discussed in
the beginning of Section 4.3.

X1 X2

Y
I J K

X1 � X2

Y
I

J

K

Thus we let X � X1 � X2, let M1
∈ Mat(X1) and M2

∈ Mat(X2), and define M � M1
⊗ M2

∈

Mat(X) to be the Kronecker product; see Definition 4.8. Note that Ŷin � I, Ŷout � K, X̂in � I × J,
and X̂out � J × K. Then the wiring diagram ϕ : X → Y above acts as follows (see (14)) on
entries:

1. for i ∈ Ŷin and (j1 , j2) ∈ X̂out, we have ϕ̂in(i , j1 , j2) � (i , j1),
2. for (j1 , j2) ∈ X̂out, we have ϕ̂out(j1 , j2) � j2.

Define N � Mat(ϕ)(M). To show that N � M1M2, we compute its entries using Equa-
tions (18) and (22):

Ni , j �
∑

k∈(ϕ̂out)−1(j)
Mϕ̂in(i ,k),k

�

∑
{(j1 , j2)| j2� j}

(M1
⊗M2)(i , j1),(j1 , j2)

�

∑
j1

M1
i , j1
·M2

j1 , j

� M1M2

Thus we have shown that, armed with the Kronecker product formula for parallel composition
(Definition 4.8) and the formula for arbitrary wiring diagrams (Definition 4.15), we reproduce
the the matrix multiplication formula for serial wiring diagrams, as in Example 2.22.

Example 4.17. We want to show that the formula in Definition 4.15 reduces to the usual partial
trace formula in the case of feedback composition. Consider the following wiring diagram
ϕ : X → Y:

X

Y

I J

K K

Analogously to Example 4.16, we find that ϕ̂in(k , j, i) � (k , i) and ϕ̂out(k , j) � j. Define
N � Mat(ϕ)(M). To show that N � TrK

I , J(M) is the partial trace, as defined in (9), we compute

4.3. Wiring together inhabitants 29

its entries using Equation (22):

Ni , j �
∑

(k , j)∈(ϕ̂out)−1(j)
Mϕ̂in(k , j,i),(k , j)

�

∑
k∈K

M(k ,i),(k , j)

� TrK
I , J(M).

One can repeat Examples 4.16 and 4.17 for splitting wires as in Example 2.24; we leave
this to the reader. We now prove (in Theorem 4.18) that one can make arbitrarily complex
wiring diagrams and the matrix formula given in (22) is consistent with regard to nesting.
This theorem holds for matrices over any semiring R, so we elide the subscript.

Theorem 4.18. The assignments X 7→ Mat(X) and ϕ 7→ Mat(ϕ) define a symmetric monoidal functor
Mat : WSet → Set.

Proof. We need to check that for any X
ϕ
−→ Y

ψ
−→ Z and matrix M ∈ Mat(X), the following

equation holds:
Mat(ψ)�Mat(ϕ)(M)� � Mat(ψ ◦ ϕ)(M).

We again simply compute the (i , j)-entries, using Equation (22), and show they agree:

Mat(ψ)�Mat(ϕ)(M)�i , j �
∑

`∈(ψ̂out)−1(j)
Mat(ϕ)(M)ψ̂in(i ,`),`

�

∑
`∈(ψ̂out)−1(j)

*..
,

∑
k∈(ϕ̂out)−1(`)

Mϕ̂in
(
ψ̂in(i ,`),k) ,k+//

-
�

∑
k∈

(G(ψ◦ϕ)out)−1(j)
Mϕ̂in

(
ψ̂in(i ,ϕ̂out(k)),k) ,k

�

∑
k∈

(G(ψ◦ϕ)out)−1(j)
M G(ψ◦ϕ)in(k),k

� Mat(ψ ◦ ϕ)(M)i , j

where the penultimate equation follows from Lemma 3.12.
Checking that it is monoidal involves a similar computation. Let ϕ1 : X1 → X′1 and

ϕ2 : X2 → X′2, let M1
∈ Mat(X1) and M2

∈ Mat(X2). Then for (i1 , i2) ∈ X̂in
1 × X̂in

2 and

4.4. Compositional mappings between open systems and matrices 30

(j1 , j2) ∈ X̂out
1 × X̂out

2 , we have

Mat(ϕ1 � ϕ2)(M1
⊗M2)(i1 ,i2),(j1 , j2) �

∑
k∈

(G(ϕ1�ϕ2)out
)−1(j1 , j2)

(M1
⊗M2) G(ϕ1�ϕ2)out((i1 ,i2),k),k

�

∑
k1∈

(
ϕ̂out
1

)−1(j1)
k2∈

(
ϕ̂out
2

)−1(j2)

M1
ϕ̂out
1 (i1 ,k1),k1 ·M

2
ϕ̂out
2 (i2 ,k2),k2

� Mat(ϕ1)(M1) ⊗ Mat(ϕ2)(M2)

�

4.4 Compositional mappings between open systems and matrices

In this section we define a few maps between various interpretations of the wiring diagram
syntax. Each of these will be compositional, meaning that one can compose a system of system
and then apply the map, or apply the maps and then compose, and the result will be the same.

First we show that Euler’s method of approximating a ordinary differential equation
by ε-steps is compositional, whether one targets discrete systems or measurable systems.
Second we show that the steady state matrix—starting from either discrete systems or
measurable systems—is also compositional. At this point, we will have achieved our goal of
compositionally classifying any of these sorts of open dynamical systems using steady state
matrices.

Euler’s ε-approximation is compositional

Note that any Euclidean space S has an underlying vector space (which we denote the same
way). For any point s ∈ S there is a canonical linear isomorphism TSs

�
−→ S. Thus for any real

number ε and element v ∈ TSs , the formula s + ε · v makes sense, where · represents scalar
multiplication. The following definition formalizes Construction 2.17.

Definition 4.19. Let X ∈ W be a box, and let F � (S, f rdt , f upd) ∈ CS(X) be a continu-
ous dynamical system. Its ε-approximation is the discrete dynamical system Appxε(F) �
(S, f rdt , f updε) ∈ DS(X), with the same state set and readout function, but where for any x ∈ X̂in

and s ∈ S, we define
f updε (x , s) B s + ε · f upd(x , s).

Abovewehave elided forgetful functors, namely theunderlyingvector space andunderlying
set functors, Euc→ Vect and Euc→ Set.

Theorem 4.20. For any ε > 0, the ε-approximation function Appxε : CS → DS is compositional,
i.e., a monoidal natural transformation of W-algebras.

4.4. Compositional mappings between open systems and matrices 31

Proof. We want to show that ε-approximation is a monoidal natural transformation,

WEuc WSet

Set

WU

CS

Appxε
⇒

DS

where WU is the forgetful functor that comes from the product-preserving functor U : Euc→
Set sending a Euclidean space to its underlying set of points. In the discussion below, we drop
subscripts for ease of exposition.

First we must check that for every wiring diagram ϕ : X → Y in W, the diagram below
commutes:

CS(X) CS(Y)

DS(X) DS(Y)

CS(ϕ)

Appxε Appxε

DS(ϕ)

which establishes that ε-approximation is a natural transformation. This is a matter of
combining Definitions 4.9 and 4.13 with Definition 4.19: for any F � (S, f rdt , f upd) ∈ CS(X),
both sides give

DS(ϕ)�Appxε(F)
�
� s + ε · f upd

(
ϕ̂in

�
y , f rdt(s)�, s) � Appxε

�
CS(ϕ)(F)�.

Second we check that Appxε is monoidal, i.e., that for any boxes X1 ,X2 ∈ W, the diagram
below commutes:

CS(X1) � CS(X2) CS(X1 � X2)

DS(X1) � DS(X2) DS(X1 � X2)

�

Appxε×Appxε Appxε

�

By Definitions 4.5 and 4.7, this comes down to checking that for f1 ∈ CS(X1) and f2 ∈ CS(X2),
we have (

f upd1

)
ε
×

(
f upd2

)
ε
�

(
f upd1 × f upd2

)
ε
.

This in turn follows from the fact that ε-approximation (Definition 4.19) preserves products,
i.e., for (a1 , s1) ∈ CS(Xi) we have(

s1 + ε · f upd1 (a1 , s1), s2 + ε · f upd2 (a2 , s2)
)
� (s , t) + ε · (f upd1 (a1 , s1), f upd2 (a2 , s2)

)
completing the proof.

�

Remark 4.21. We could also consider the ε-approximation function as a map Appxε : CS→ MS.
First we need a monoidal functor WU : WEuc → WMS; this is given by the product-preserving
functor U : Euc → MS sending a Euclidean space to its underlying countably-separated
measurable space of Borel sets (see Proposition 2.12). The only other difference with

4.4. Compositional mappings between open systems and matrices 32

Definition 4.20 is that we must specify a measure on the underlying measurable space U(S).
We use the canonical measure, given by integrating the volume form, that exists on any
Euclidean space, or more generally, on any oriented manifold.

Steady state matrices

In Definition 2.4 we introduced the notion of steady states for discrete dynamical systems. In
Definition 4.22 we gather these into a matrix, and in Theorem 4.23 we show that this mapping
is compositional.

Definition 4.22. Let X ∈ W be a box, and let F � (S, f rdt , f upd) ∈ DS(X) be a discrete
dynamical system. Its matrix of steady states is the (X̂in × X̂out)-matrix, Stst(F) ∈ Mat(X) given
in Definition 2.26. That is, its (i , j)-entry is defined by the number of steady states

Mi , j � #
�
s ∈ S | f rdt(s) � j, f upd(i , s) � s

	
(23)

for i ∈ X̂in , j ∈ X̂out.

Theorem 4.23. The steady state map Stst : DS → Mat is compositional, i.e., a monoidal natural
transformation of W-algebras.

Proof. First we must check that for every wiring diagram ϕ : X → Y in W, the diagram below
commutes:

DS(X) DS(Y)

Mat(X) Mat(Y)

DS(ϕ)

Stst Stst

Mat(ϕ)
We compute both sides, using Equations (20), (23), and (22), on an arbitrary F � (S, f rdt , f upd) ∈
DS(X):

Stst
�
DS(ϕ)(F)�i , j � #

{
s ∈ S | ϕ̂out

�
f rdt(s)� � j, and f upd

(
ϕ̂in

�
i , f rdt(s)�, s) � s

}

�

∑
k∈(ϕ̂out)−1(j)

#
{
s ∈ S | f rdt(s) � k , and f upd

�
ϕ̂in(i , k), s�

� s
}

� Mat(ϕ)�Stst(F)�i , j .

The middle equality follows because the sets
{
s ∈ S | f rdt(s) � k , and f upd

�
ϕ̂in(i , k), s�

� s
}

are disjoint for varying values of k. It is easy to show that the functor Stst is monoidal; in
particular,

Stst(F1 � F2)(i1 ,i2),(j1 , j2) � #
{
(s1 , s2) ∈ S1 × S2

�����
(f1 � f2)rdt(s1 , s2) � (j1 , j2),
(f1 � f2)upd�(i1 , i2), (s1 , s2)� � (s1 , s2)

}
� #

{
(s1 , s2) ∈ S1 × S2

�����
f rdt1 (s1) � j1 , f upd1 (i1 , s1) � s1 ,
f rdt2 (s2) � j2 , f upd2 (i2 , s2) � s2

}
�

�
Stst(F1) ⊗ Stst(F2)�(i1 ,i2),(j1 , j2)

4.4. Compositional mappings between open systems and matrices 33

�

Lemma 4.24. Suppose that f : A × B → B and 1 : B → C are measurable functions between
countably-separated measurable spaces. Then for any a ∈ A and c ∈ C, the set

X � {b ∈ B | 1(b) � c , f (a , b) � b}

is measurable.

Proof. By Proposition 2.12, the singleton {c} ⊆ C is measurable, so the set X1 B 1−1(c) ⊆ B is
measurable. Consider now the composite function

B
�
−→ {a} × B → A × B

f
−→ B.

It is the composition of measurable functions, so again by Proposition 2.12 its fixed point set
X2 � {b | f (a , b) � b} is measurable. Then X � X1 ∩ X2 is the intersection of measurable sets.

�

Definition 4.25. Let X ∈ W be a box, and let F � (S, µ, f rdt , f upd) ∈ MS(X) be a measurable
system. For any i ∈ X̂in and j ∈ X̂out, the set

M̃i , j �
�
s ∈ S | f rdt(s) � j, f upd(i , s) � s

	
(24)

is measurable by Lemma 4.24. Thus we can define the matrix of steady states of F to be the
(X̂in × X̂out)-matrix M � Stst(F) with (i , j)-entry defined by the measure

Mi , j � µ
(
M̃i , j

)
.

Corollary 4.26. The steady state mapping Stst : MS→ Mat is compositional, i.e., a monoidal natural
transformation of W-algebras.

Proof. The proof is very similar to that of Theorem 4.23, with the measure µ substituted for
the count #.

�

The same idea works for continuous dynamical systems.

Corollary 4.27. The steady state mapping for continuous dynamical systems, as in Definition 2.18, is
compositional, and for any ε > 0 the following diagram of W-algebras commutes and is natural in X:

CS(X) DS(X)

Mat(X)
Stst(X)

Appxε(X)

Stst(X)

4.4. Compositional mappings between open systems and matrices 34

Proof. If the diagram commutes for any X, then clearly Stst : CS → Mat is compositional
by Theorems 4.20 and 4.23. To see that it commutes for any X, we simply appeal to
Definitions 4.22, 2.18, and 4.19. That is, s ∈ S is a steady state for the ε-approximation
Appxε(f) of f at input x when

s � f updε (x , s) � s + ε · f upd(x , s)
Since ε > 0, this equation holds if and only if f upd(x , s) � 0, i.e., when s is a steady state of f .

�

Remembering, rather than measuring, the states

Above, we counted the number of steady states, but it is often useful to keep track of
the steady states themselves. For this we provide one more algebra on WSet—i.e., a fifth
"intrepretation"—whose formulas will look very much like those of matrices. We need just a
bit more background.

Recall that if S is a set then its powerset P(S) is a join semi-lattice; that is, any two elements
U,V ∈ P(S) have a join U ∨ V , given by taking the union of the corresponding subsets
U ∪ V ⊆ S. If U ⊆ S and V ⊆ T, their subset product is given by U × V ⊆ S × T. We denote
this operation by

� : P(S) × P(T)→ P(S × T).
Given sets X and Y and functions f : X → P(S) and 1 : Y → P(T), we can take their product to
obtain (f × 1) : X × Y → P(S) × P(T). We denote by (f � 1) : X × Y → P(S × T) to denote the
function (x , y) 7→ f (x) � 1(y).
Example 4.28. Suppose {s1 , s2} ⊆ S and {t1 , t2 , t3} ⊆ T. Then their subset product is

{s1 , s2} � {t1 , t2 , t3} � {(s1 , t1), (s1 , t2), (s1 , t3), (s2 , t1), (s2 , t2), (s2 , t3)} ⊆ S × T.

Definition 4.29. Let A, B ∈ Set be sets. We define a (A, B)-matrix of subsets to be a pair (S,M)
where S ∈ Set is a set and M : A × B → P(S) is function. We may denote M(a , b) by Ma ,b .

If X � (Xin ,Xout) ∈ WSet is a Set-box, defineMat(X) to be the set of (X̂in , X̂out)-matrices of
subsets:

Mat(X) B {(S,M) ��� S ∈ Set, M : X̂in × X̂out → P(S)}

Remark 4.30. Compare Definition 4.29 with Definition 4.4 for ordinary matrices; the difference
is that here we have let the semiring vary in a particular way. Similarly, it is useful to
compare Definition 4.31 with Definition 4.8 for parallel composition, and Definition 4.32 with
Definition 4.15 for wiring.

Definition 4.31. Suppose we are given (S1 ,M1) ∈ Mat(X1) and (S2 ,M2) ∈ Mat(X2). Their
parallel composition, denoted (T,M1

⊗ M2), is defined by setting T � S1 × S2 and, for any
(i1 , i2) ∈ X̂in

1 × X̂in
2 and (j1 , j2) ∈ X̂out

1 × X̂out
2 , by setting

(M1
⊗M2)(i1 ,i2),(j1 , j2) B M1

i1 , j1
�M2

i2 , j2
. (25)

4.4. Compositional mappings between open systems and matrices 35

Definition 4.32. Let ϕ : X → Y be a wiring diagram in Set, and suppose that (S,M) ∈Mat(X)
is a (X̂in × X̂out)-matrix of subsets. We define theMat-application of ϕ to M, denoted (T,N) �
Mat(ϕ)(S,M) ∈Mat(Y) to be the (Ŷin × Ŷout)-matrix of subsets, with T � S and with entries

Ni , j B
⋃

k∈(ϕ̂out)−1(j)
Mϕ̂in(i ,k),k (26)

for any i ∈ Ŷin and j ∈ Ŷout.

Theorem 4.33. The assignments X 7→ Mat(X) and ϕ 7→ Mat(ϕ) define a symmetric monoidal
functor Mat : WSet → Set.

Proof. If X
ϕ
−→ Y

ψ
−→ Z are maps and (S,M) ∈ Mat(X) is a matrix of subsets, the proof that

Mat(ψ)�Mat(ϕ)(M)� � Mat(ψ ◦ϕ)(M) is simiilar to that of Theorem 4.18. The only difference
is that

∑
is replaced by

⋃
; compare (22) and (26).

�

Definition 4.34. Let X ∈ W be a box, and let F � (S, f rdt , f upd) ∈ DS(X) be a discrete
dynamical system. Its matrix of steady state-sets is the (X̂in × X̂out)-matrix of subsets, denoted
(S,M) � Stst(F) ∈Mat(X), with (i , j)-entry defined by the set steady states

Mi , j B
�
s ∈ S | f rdt(s) � j, f upd(i , s) � s

	
(27)

for i ∈ X̂in , j ∈ X̂out.

Theorem 4.35. The steady state-set mapping Stst : DS → Mat is compositional, i.e., a monoidal
natural transformation of W-algebras, as is the count function #: Mat → Mat, and the following
diagram of WSet-algebras commutes:

DS Mat

Mat

Stst

Stst
#

Proof. Recalling Equations (23) and (27), it is clear that for any X ∈ W, the above diagram
commutes at X. It remains to show that Stst and # are monoidal natural transformations.
The proof that Stst is monoidal is almost identical to the proof of Theorem 4.23 (which says
Stst is monoidal), except with

∑
replaced by

⋃
. It is easy to show that # : Mat → Mat is a

monoidal transformation; for example one invokes the fact that count preserves products,
#A · #B � #(A × B).

�

Example 4.36. We repeat Example 2.27, except with state set matrices rather than merely their
counts. Recall that two dynamical systems are put into series, the first of which comes from

4.5. Extended example 36

Example 2.5. The state-set matrix for X1 and X2, as well as their product, are below

*
,

{2} ∅ ∅

∅ {1, 4} ∅

+
-

*...
,

{p} ∅

{p , r} ∅

∅ {q}

+///
-

� *
,

{(2, p)} ∅

{(1, p), (1, r), (4, p), (4, r)} ∅

+
-

4.5 Extended example

In this example, we string together eight discrete dynamical systems. Let’s refer to the
following wiring diagram as ϕ : W,X,X,X,X,X,X,Y −→ Z:

W X X X X X X Y

Z
(28)

Suppose that each interior box is inhabited by a discrete dynamical system. Below, the
transition diagrams are shown: the leftmost one, w ∈ DS(W), is shown left; the middle six are
all the same, x ∈ DS(X), and are shown in the middle; and the rightmost one, y ∈ DS(Y), is
shown right:

State: a

Readout: T

State: b

Readout: F

FF, FTFF, TF

TT, TF

TT, FT

w ∈ DS(W)

State: 1

Readout: T

State: 3

Readout: F

State: 2

Readout: F

F

FT

T T

F

x ∈ DS(X)

State: p

Readout: TT

State: q

Readout: TF

State: r

Readout: FT

State: s

Readout: FF

F

T

F

T

F

TT, F

y ∈ DS(Y)

The composed dynamical system z B DS(ϕ)(w , x , x , x , x , x , x , y) has 2 · 36 · 4 � 5832 states.
One can imagine it as a stack of eight parallel layers: a w, then six x’s, then a y, each sending
information to the next—with feedback at the end—i.e., the readout of one layer sent forward
as the state-change command for the next. A composite state is a choice of one state in each
layer.

Rather than write out the 5832-state transition diagram of the layered system, suppose we
just want to understand its steady states. We begin by writing down the matrix of steady state
sets associated to each system, e.g., Stst(w) ∈Mat(w). They are shown below with row- and

4.5. Extended example 37

column-labels to keep things clear:

Stst(w) �
Outputs:

Is fixed by: T F
TT {a} {b}
TF {a} ∅

FT ∅ {b}
FF ∅ ∅

Stst(x) �
Outputs:

Is fixed by: T F
T {1} {2}
F ∅ {3}

Stst(y) �
Outputs:

Is fixed by: TT TF FT FF
T {p} {q} ∅ ∅

F {p} ∅ {r} ∅

We will abbreviate tuples by removing parentheses and commas, so that the two-element set
{(a , b , c), (c , e)} is written {abc , ce}.

We can now use the steady-state formulas (25) and (26) to compute the steady state-set
matrix Stst(z). However, using these fully general formulas is not always the most efficient
approach. Following Examples 4.16 and 4.17, we can instead multiply the matrices for the
serial composition

Stst(w)Stst(x)6Stst(y),
and then trace the result. The fact that this will work comes down to the functoriality of Stst
(proven as Theorem 4.33).

The reader should try calculating the matrix multiplication Stst(x)Stst(x). One can then
see that the serial composition of the middle x’s, namely Stst(x)6, is

Outputs:
Is fixed by: T F

T {111111} {111112, 111123, 111233, 112333, 123333, 233333}
F ∅ {3333333}

We continue in this way, and calculate Stst(w)Stst(x6)Stst(y):
Stst(wx6y) �

Outputs:
Is fixed by: TT TF FT FF

TT




a111111p , a111112p ,
a111123p , a111233p ,
a112333p , a123333p ,
a233333p , b333333p




{a111111q}



a111112r, a111123r,
a111233r, a112333r,
a123333r, a233333r,
b333333r




∅

TF




a111111p , a111112p ,
a111123p , a111233p ,
a112333p , a123333p ,
a233333p




{a111111q}



a111112r, a111123r,
a111233r, a112333r,
a123333r, a233333r



∅

FT {b333333p} ∅ {b333333r} ∅

FF ∅ ∅ ∅ ∅

Bibliography 38

Finally, we take the partial trace of this matrix to obtain the desired result, Stst(z):

Stst(x) �
Outputs:

Is fixed by: T F

T




a111111p , a111112p ,
a111123p , a111233p ,
a112333p , a123333p ,
a233333p , b333333p ,
a111111q







a111112r, a111123r,
a111233r, a112333r,
a123333r, a233333r,
b333333r




F {b333333p} {b333333r}
This matrix tells us the steady states of the composite dynamical system z.

Let’s interpret the results by invoking our image of z as a layered system of w, the six
x’s, and y. If we input ’T’ to the system our matrix tells us that ’a111223p’ is a steady state
outputting ’T’ and that ’b333333r’ is a steady state outputting ’F’. These 8-character strings are
the composite states; one in each layer.

It is easy to check that when y is in state p, the system z outputs ’T’ and that when y is
in state r, the system outputs ’F’.2 Thus it suffices to see that these two states are fixed by an
input of T. We leave it to the reader to check that the output of every layer indeed leaves the
state of the next layer fixed.

Acknowledgements

Thanks go to Gaurav Venkataraman and to Rosalie Bélanger-Rioux for interesting and helpful
conversations. This work was supported by AFOSR grant FA9550–14–1–0031, ONR grant
N000141310260, and NASA grant NNH13ZEA001N.

Bibliography

[Awo10] Steve Awodey. Category Theory, volume 52 of Oxford Logic Guides. Oxford University
Press, Oxford, second edition, 2010.

[Bog07] V. I. Bogachev. Measure theory. Vol. I, II. Springer-Verlag, Berlin, 2007.

[CF78] Edward C. Carterette and Morton P. Friedman, editors. Handbook of Perception,
volume IX of Perceptual Processing. Academic Press, 1978.

[DK09] Manfred Droste and Werner Kuich. Semirings and formal power series. Springer, 2009.

[Fre06] D. H. Fremlin. Measure theory. Vol. 1–4. Torres Fremlin, Colchester, 2006.
2Looking at the wiring diagram (28), the top output of y is output by the system and the second is fed back to

w, so if y outputs ’FT’ then z outputs ’F’.

Bibliography 39

[Izh07] Eugene M. Izhikevich. Dynamical Systems in Neuroscience. MIT Press, 2007.

[JSV96] André Joyal, Ross Street, and Dominic Verity. Traced monoidal categories. Math.
Proc. Cambridge Philos. Soc., 119(3):447–468, 1996.

[Lei04] Tom Leinster. Higher Operads, Higher Categories, volume 298 of London Mathematical
Society Lecture Note Series. Cambridge University Press, Cambridge, 2004.

[ML98] Saunders Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate
Texts in Mathematics. Springer-Verlag, New York, second edition, 1998.

[Moo56] Edward F Moore. Gedanken-experiments on sequential machines. Automata Studies,
Annals of Mathematical Studies, 34:129–153, 1956.

[SH11] Willi-Hans Steeb and Yorick Hardy. Matrix calculus and Kronecker product. World
Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, second edition, 2011. A practical
approach to linear and multilinear algebra.

[Spi14] David I. Spivak. Category Theory for the Sciences. MIT Press, 2014.

[SR13] David I. Spivak and Dylan Rupel. The operad of temporal wiring diagrams:
formalizing a graphical language for discrete-time processes. ePrint online: www.
arXiv.org/abs/1307.6894, 2013.

[SSR15] David I. Spivak, Patrick Schultz, and Dylan Rupel. Traced categories as lax functors
out of free compact categories. (In preparation), 2015.

[Str94] Steven H. Strogatz. Nonlinear Dynamics and Chaos. Studies in nonlinearity. Perseus
Books, 1994.

[Tur50] A. M. Turing. Computing machinery and intelligence. Mind, 59:433–460, 1950.

[VSL15] Dmitry Vagner, David I. Spivak, and Eugene Lerman. Algebras of open dynamical
systems on the operad of wiring diagrams. Accepted in Theory and Applications of
Categories. Available online: http://arxiv.org/abs/1408.1598, 2015.

[War83] Frank W. Warner. Foundations of Differentiable Manifolds and Lie Groups, volume 94 of
Graduate Texts in Mathematics. Springer-Verlag, New York-Berlin, 1983. Corrected
reprint of the 1971 edition.

www.arXiv.org/abs/1307.6894
www.arXiv.org/abs/1307.6894
http://arxiv.org/abs/1408.1598

	Introduction
	Compositional viewpoints of dynamical systems
	Plan of paper
	Notation and Background

	Open dynamical systems and matrices
	Discrete dynamical systems
	Measurable dynamical systems
	Continuous dynamical systems
	Matrices (and wiring diagrams)
	Introducing the compositionality of steady states

	Category-theoretic formulation of wiring diagrams
	Category theory references
	Typed finite sets and their dependent products
	The monoidal category W of wiring diagrams

	Four formal interpretations of wiring diagrams
	Inhabitants of a box
	Parallelizing inhabitants
	Wiring together inhabitants
	Compositional mappings between open systems and matrices
	Extended example

	Bibliography

