Problem 1. If $A^{T}Av = \sigma^{2}v$, multiply both sides by A and *put in parentheses* to show this again: If v is an eigenvector of $A^{T}A$, then Av is an eigenvector of AA^{T} .

Problem 2. Find the eigenvalues and unit eigenvectors of $A^{T}A$ and AA^{T} . Keep each $Av = \sigma u$. Then construct the singular value decomposition and verify that A equals $U\Sigma V^{T}$.

Fibonacci matrix $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$

Problem 3. Use the **svd** part of the **MATLAB** demo **eigshow** to find those *v*'s graphically (from Problem 2).

Problem 4. Suppose A is invertible (with $\sigma_1 > \sigma_2 > 0$). Change A by as small a matrix as possible to produce a singular matrix A_0 . Hint: U and V do not change:

From
$$A = \begin{bmatrix} u_1 & u_2 \end{bmatrix} \begin{bmatrix} \sigma_1 & \\ & \sigma_2 \end{bmatrix} \begin{bmatrix} v_1 & v_2 \end{bmatrix}^{\mathrm{T}}$$
 find the nearest A_0 .