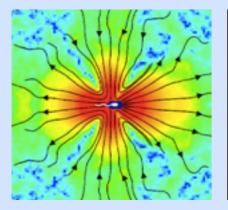
18.095 IAP Maths Lecture Series

Over-damped dynamics of small objects in fluids

Jörn Dunkel Physical Applied Math

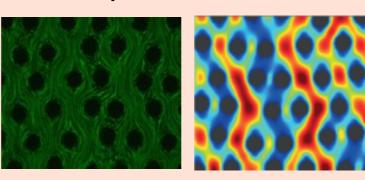
Fluid dynamics of microorganisms



Goldstein group

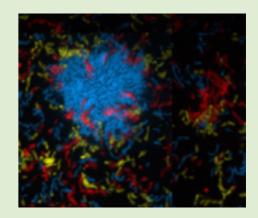
WINIVERSITY OF
CAMBRIDGE

Microbial transport in porous media



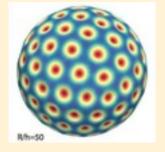
Guasto lab

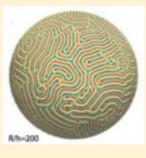
Biofilm formation



Drescher lab

Surface wrinkling

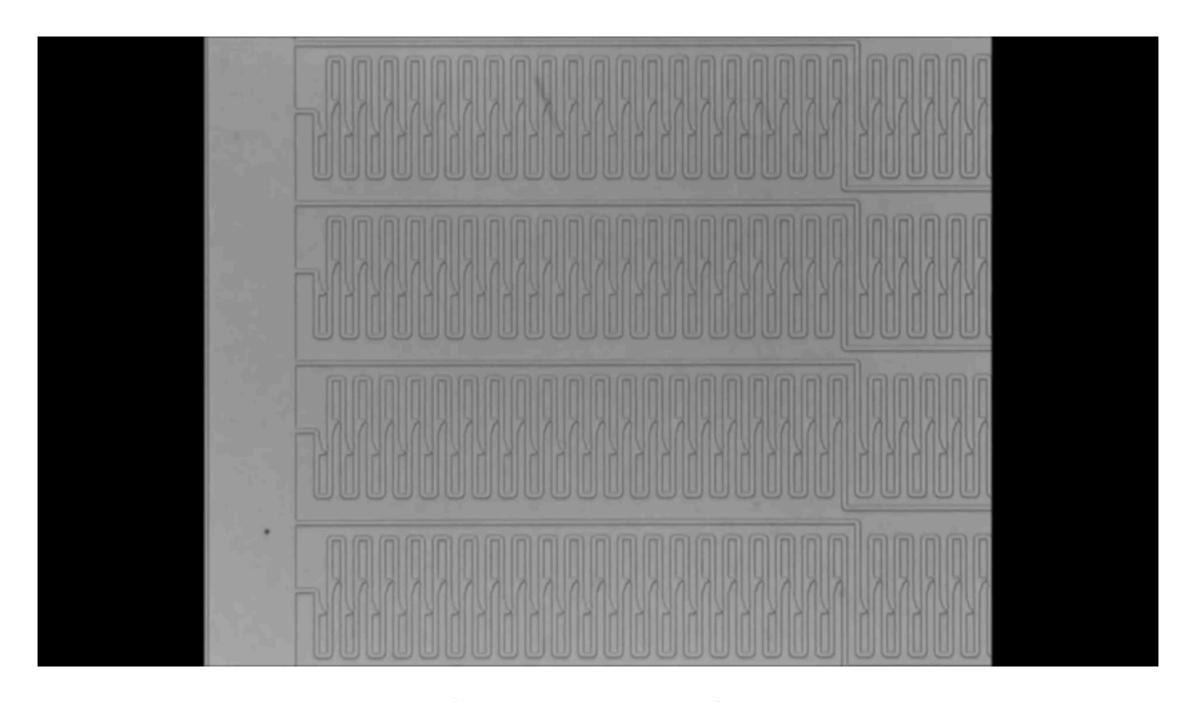




Reis lab

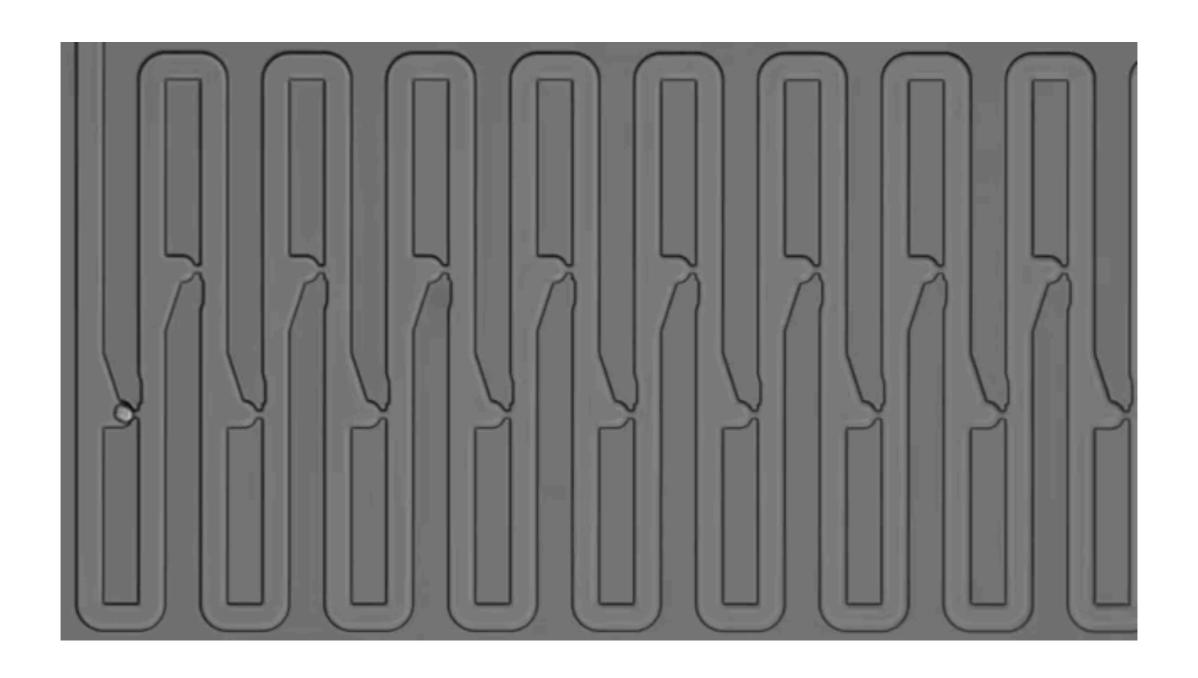
Biological pattern formation

Gregor lab



Labs of Manalis & Shalek

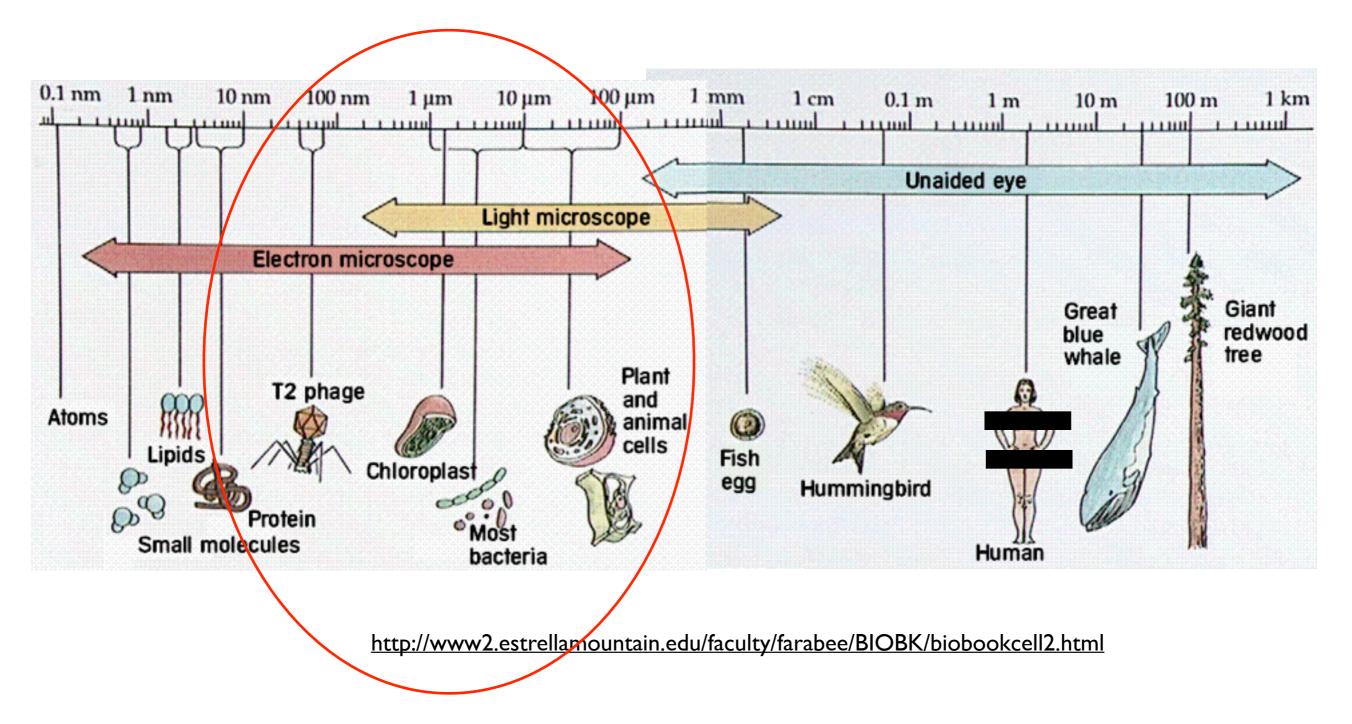
Nature Communications 7, Article number: 10220



Labs of Manalis & Shalek

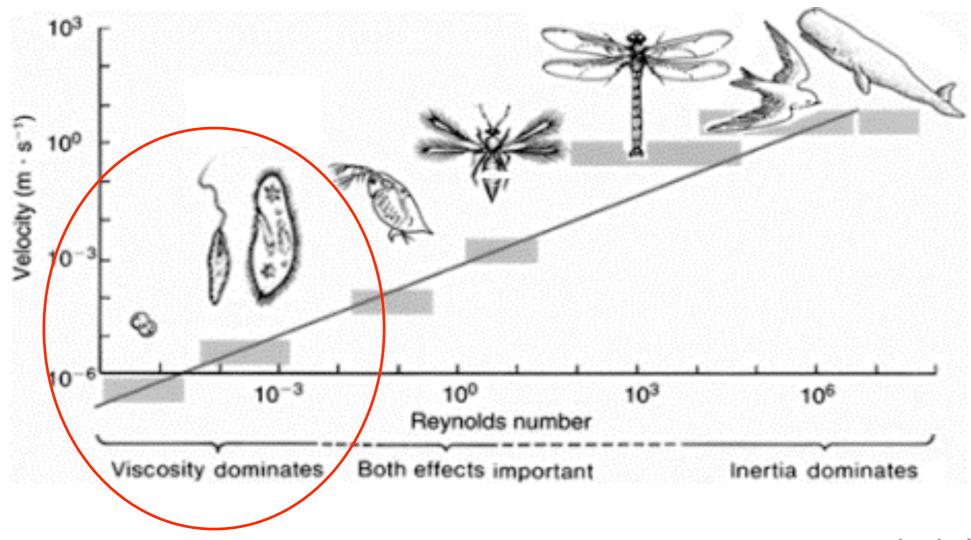
Nature Communications 7, Article number: 10220

Typical length scales



Reynolds numbers

$$Re = \frac{\rho UL}{\mu} = \frac{UL}{\nu}$$



Laminar (low-Re) flow

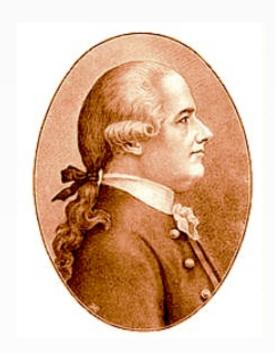
For Re→0 fluid flow becomes reversible!

... except for thermal fluctuations

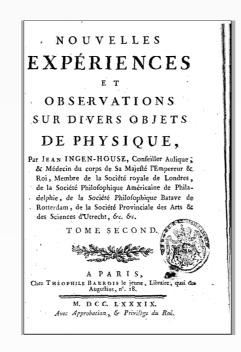
Brownian motion

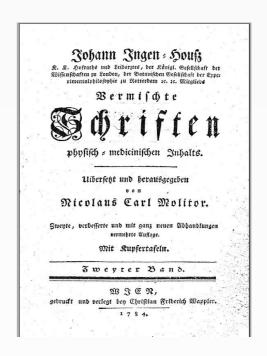
"Brownian" motion

Jan Ingen-Housz (1730-1799)



1784/1785:

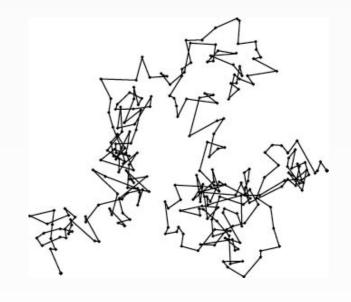




über betrügen könnte, darf man nur in den Brennpunct eines Mikrostops einen Tropfen Weingeist sammt etwas gestoßener Kohle segen; man wird diese Körperchen in einer verwirrten beständigen und heftigen Bewegung ers blicken, als wenn es Thierchen waren, die sich reissend unter einander fortbewegen.

http://www.physik.uni-augsburg.de/theo1/hanggi/History/BM-History.html

Robert Brown (1773-1858)

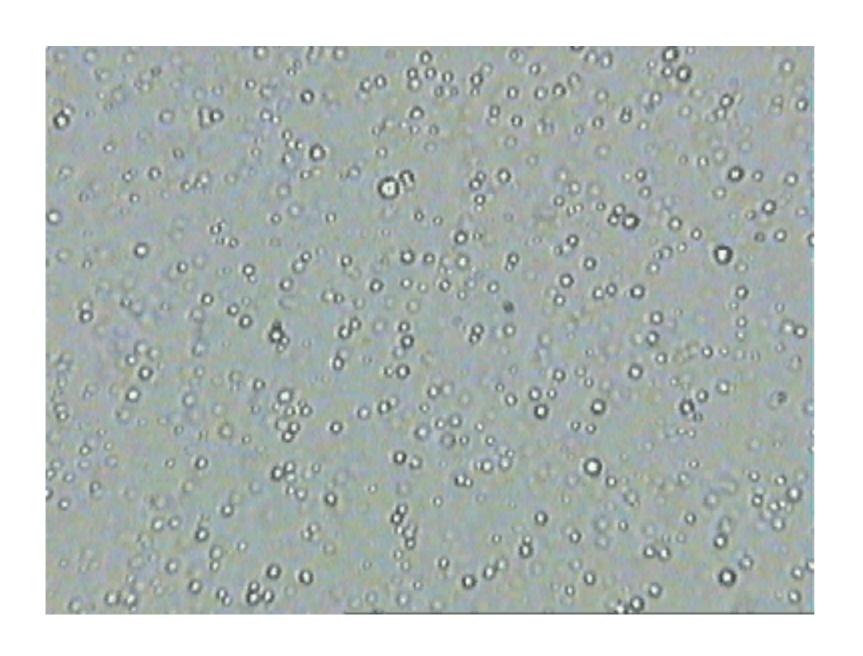


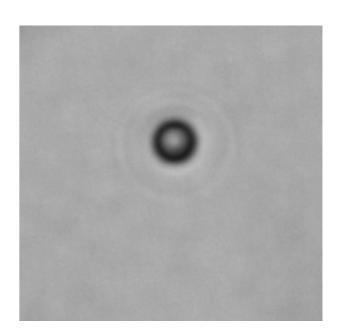
Linnean Society (London)

1827: irregular motion of pollen in fluid

http://www.brianjford.com/wbbrownc.htm

Brownian motion





Mark Haw

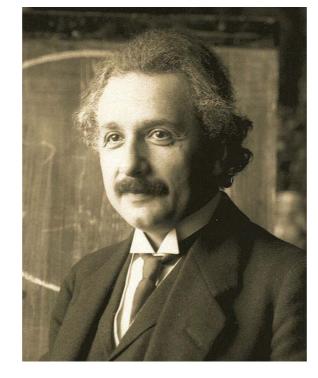
David Walker

W. Sutherland (1858-1911)

M. Smoluchowski (1872-1917)

Source: www.theage.com.au

 $D = \frac{RT}{6\pi\eta aC}$



Source: wikipedia.org

Source: wikipedia.org
$$\langle x^2(t) \rangle = 2Dt$$

$$D = \frac{RT}{N} \frac{1}{6\pi kP}$$

Source: wikipedia.org

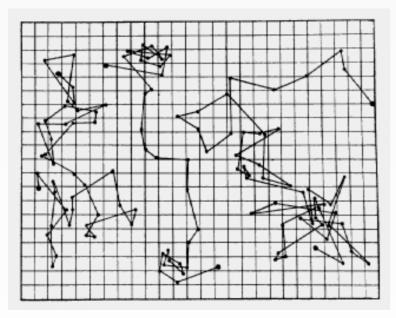
$$D = \frac{32}{243} \frac{mc^2}{\pi \mu R}$$

Phil. Mag. **9**, 781 (1905)

Ann. Phys. **17**, 549 (1905)

Ann. Phys. **21**, 756 (1906)

Jean Baptiste Perrin (1870-1942, Nobel prize 1926)



Mouvement brownien et réalité moléculaire, Annales de chimie et de physique VIII 18, 5-114 (1909)

Les Atomes, Paris, Alcan (1913)

 $D = \frac{kT}{6\pi\eta_0 a}, \quad k = \frac{R}{N_A}$

- ightharpoonup colloidal particles of radius $0.53\mu m$
- successive positions every 30 seconds joined by straight line segments
- ightharpoonup mesh size is $3.2\mu\mathrm{m}$

$$N_A = 6.56 \times 10^{23}$$

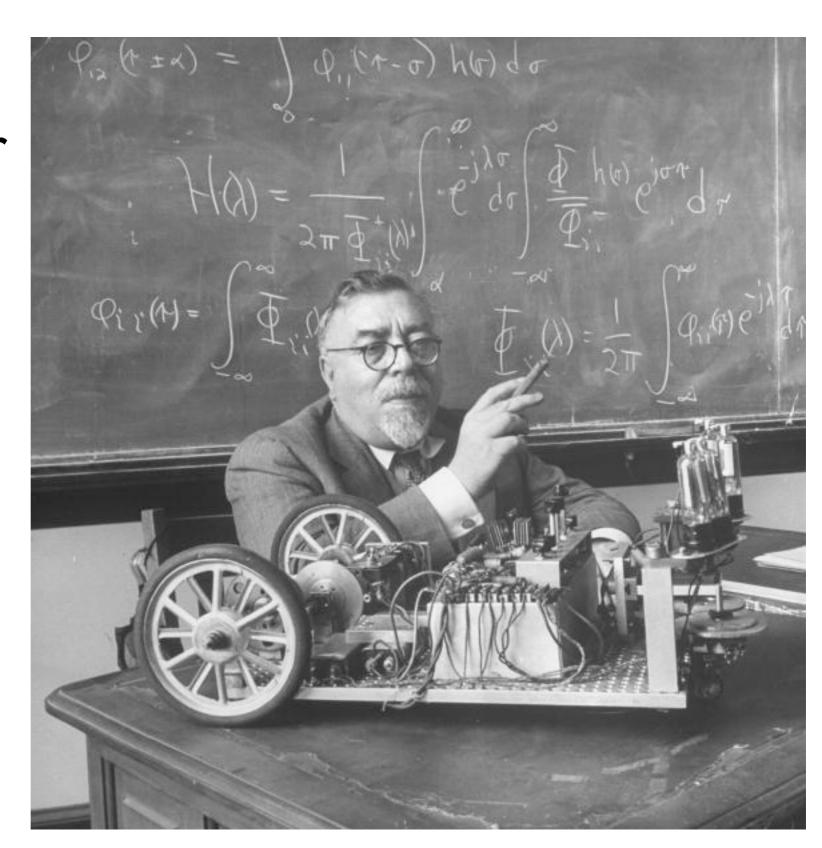
experimental evidence for atomistic structure of matter

Mathematical theory

Norbert Wiener

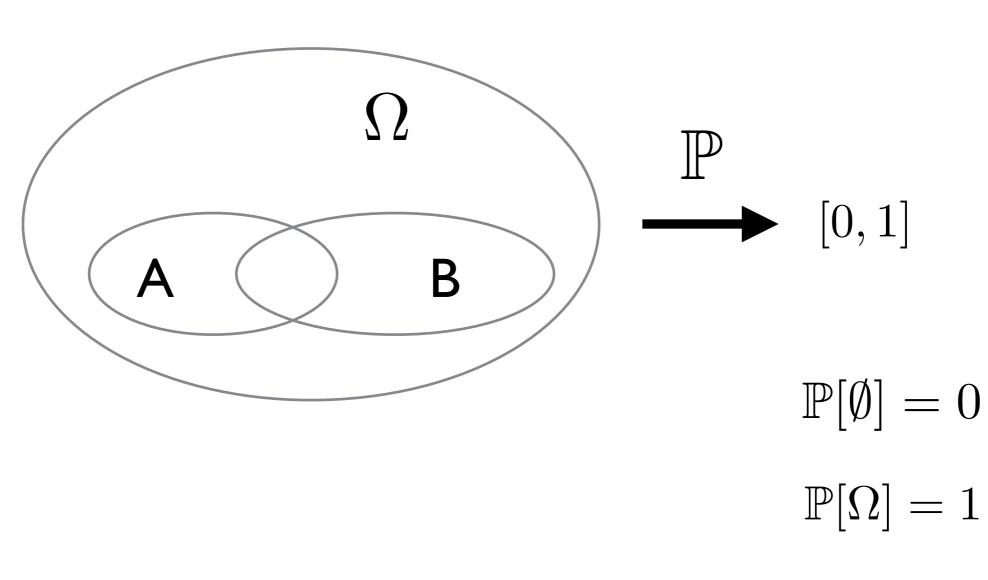
(1894-1864)

MIT



Probability space $(\Omega, \mathcal{F}, \mathbb{P})$

$$\mathcal{F} = \{\emptyset, A, B, A \cap B, A \cup B, \dots, \Omega\}$$



$$\mathbb{P}[A \cup B] = \mathbb{P}[A] + \mathbb{P}[B] - \mathbb{P}[A \cap B]$$

Expectation values of discrete random variables

$$X: \Omega \to \{x_1, \ldots, x_N\}$$

$$p_i \ge 0, \qquad \sum_{i=1}^N p_i = 1$$

$$\mathbb{E}[f(X)] = \sum_{i=1}^{N} p_i f(x_i)$$

$$\mathbb{E}[\alpha f(X) + \beta g(X)] = \alpha \mathbb{E}[f(X)] + \beta \mathbb{E}[g(X)]$$

Expectation values of continuous random variables

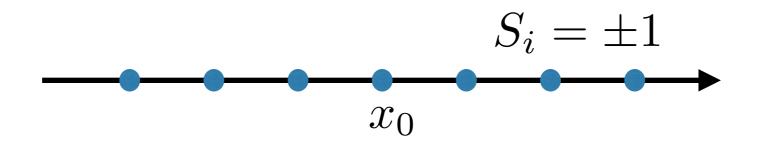
$$X:\Omega\to\mathbb{R}^n$$

$$p(x) \ge 0, \qquad \int dx \ p(x) = 1$$

$$\mathbb{E}[f(X)] = \int d\mathbb{P}f(x) = \int dx \ p(x)f(x)$$

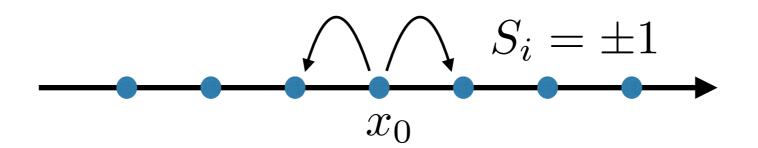
$$\mathbb{E}[\alpha f(X) + \beta g(X)] = \alpha \mathbb{E}[f(X)] + \beta \mathbb{E}[g(X)]$$

Random walk model



$$X_N = x_0 + \ell \sum_{i=1}^N S_i$$

$$\mathbb{E}[f(S)] = \sum_{a=1}^{2} p_a f(s_a)$$



1.1 Random walk

Consider the one-dimensional unbiased RW (fixed initial position $X_0 = x_0$, N steps of length ℓ)

$$X_N = x_0 + \ell \sum_{i=1}^N S_i$$
 (1.1)

where $S_i \in \{\pm 1\}$ are iid. random variables (RVs) with $\mathbb{P}[S_i = \pm 1] = 1/2$. Noting that ¹

$$\mathbb{E}[S_i] = -1 \cdot \frac{1}{2} + 1 \cdot \frac{1}{2} = 0, \tag{1.2}$$

$$\mathbb{E}[S_i S_j] = \delta_{ij} \,\mathbb{E}[S_i^2] = \delta_{ij} \,\left[(-1)^2 \cdot \frac{1}{2} + (1)^2 \cdot \frac{1}{2} \right] = \delta_{ij}, \tag{1.3}$$

we find for the first moment of the RW

$$\mathbb{E}[X_N] = x_0 + \ell \sum_{i=1}^N \mathbb{E}[S_i] = x_0$$
 (1.4)

Second moment (uncentered)

$$\mathbb{E}[X_N^2] = \mathbb{E}[(x_0 + \ell \sum_{i=1}^N S_i)^2]$$

$$= \mathbb{E}[x_0^2 + 2x_0 \ell \sum_{i=1}^N S_i + \ell^2 \sum_{i=1}^N \sum_{j=1}^N S_i S_j]$$

$$= x_0^2 + 2x_0 \cdot 0 + \ell^2 \sum_{i=1}^N \sum_{j=1}^N \mathbb{E}[S_i S_j]$$

$$= x_0^2 + 2x_0 \cdot 0 + \ell^2 \sum_{i=1}^N \sum_{j=1}^N \delta_{ij}$$

$$= x_0^2 + \ell^2 N. \tag{1.5}$$

Variance

The variance (second centered moment)

$$\mathbb{E}\left[(X_N - \mathbb{E}[X_N])^2\right] = \mathbb{E}[X_N^2 - 2X_N \mathbb{E}[X_N] + \mathbb{E}[X_N]^2]$$

$$= \mathbb{E}[X_N^2] - 2\mathbb{E}[X_N] \mathbb{E}[X_N] + \mathbb{E}[X_N]^2]$$

$$= \mathbb{E}[X_N^2] - \mathbb{E}[X_N]^2 \qquad (1.6)$$

therefore grows linearly with the number of steps:

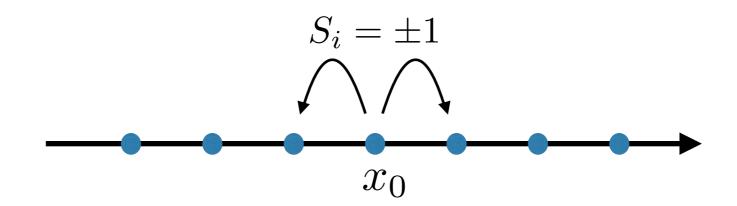
$$\mathbb{E}\left[(X_N - \mathbb{E}[X_N])^2\right] = \ell^2 N. \tag{1.7}$$

$$x_0 = 0, \qquad N = t/\tau$$

Let

$$\mathbb{E}[X_N^2] = 2Dt, \qquad D := \frac{\ell^2}{2\tau}$$

Continuum limit

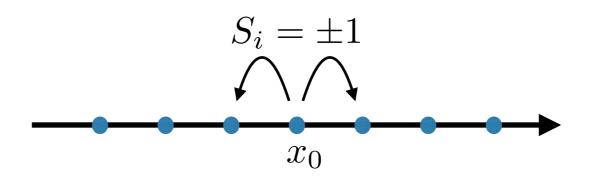


$$X_N = x_0 + \ell \sum_{i=1}^N S_i$$

Let
$$x_0 = 0$$
, $N = t/\tau$

$$P(N,K) := \mathbb{P}[X_N/\ell = K]$$

Continuum limit



$$P(N,K) = \left(\frac{1}{2}\right)^{N} \binom{N}{\frac{N-K}{2}}$$

$$= \left(\frac{1}{2}\right)^{N} \frac{N!}{((N+K)/2)! ((N-K)/2)!}.$$
(1.8)

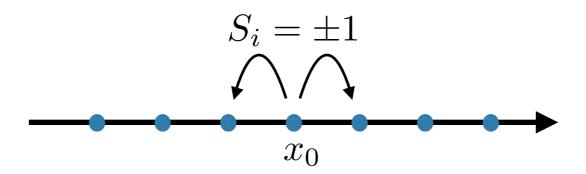
The associated probability density function (PDF) can be found by defining

$$p(t,x) := \frac{P(N,K)}{2\ell} = \frac{P(t/\tau, x/\ell)}{2\ell}$$
 (1.9)

and considering limit $\tau, \ell \to 0$ such that

$$D := \frac{\ell^2}{2\tau} = const,\tag{1.10}$$

Continuum limit



yielding the Gaussian

$$p(t,x) \simeq \sqrt{\frac{1}{4\pi Dt}} \exp\left(-\frac{x^2}{4Dt}\right)$$
 (1.11)

Eq. (1.11) is the fundamental solution to the diffusion equation,

$$\partial_t p_t = D \partial_{xx} p, \tag{1.12}$$

where $\partial_t, \partial_x, \partial_{xx}, \dots$ denote partial derivatives. The mean square displacement of the continuous process described by Eq. (1.11) is

$$\mathbb{E}[X(t)^2] = \int dx \ x^2 p(t, x) = 2Dt, \tag{1.13}$$

in agreement with Eq. (1.7).

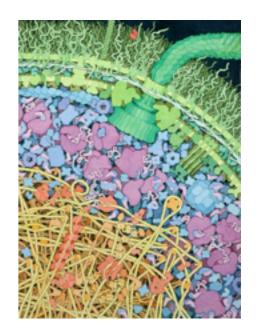
Different types of "diffusion"

Remark One often classifies diffusion processes by the (asymptotic) power-law growth of the mean square displacement,

$$\mathbb{E}[(X(t) - X(0))^2] \sim t^{\mu}. \tag{1.14}$$

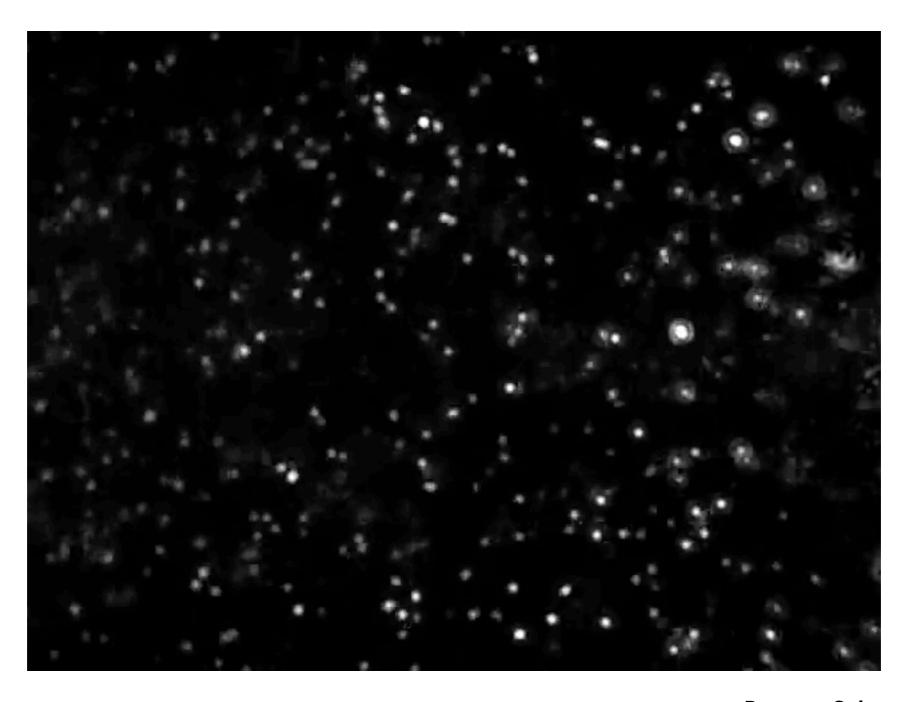
- $\mu = 0$: Static process with no movement.
- $0 < \mu < 1$: Sub-diffusion, arises typically when waiting times between subsequent jumps can be long and/or in the presence of a sufficiently large number of obstacles (e.g. slow diffusion of molecules in crowded cells).
- $\mu = 1$: Normal diffusion, corresponds to the regime governed by the standard Central Limit Theorem (CLT).
- $1 < \mu < 2$: Super-diffusion, occurs when step-lengths are drawn from distributions with infinite variance (Lévy walks; considered as models of bird or insect movements).
- $\mu = 2$: Ballistic propagation (deterministic wave-like process).

Relevance in biology



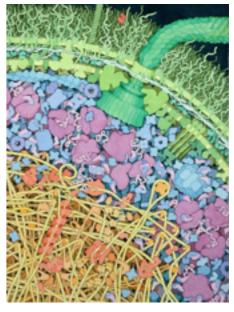
- intracellular transport
- intercellular transport
- microorganisms must beat BM to achieve directed locomotion
- tracer diffusion = important experimental "tool"
- generalized BMs (polymers, membranes, etc.)

Nano-spheres in water



Rutger Saly

Polymer in a fluid



 $< 1\mu m$

Dogic lab (Brandeis)

Ring-polymer in a fluid

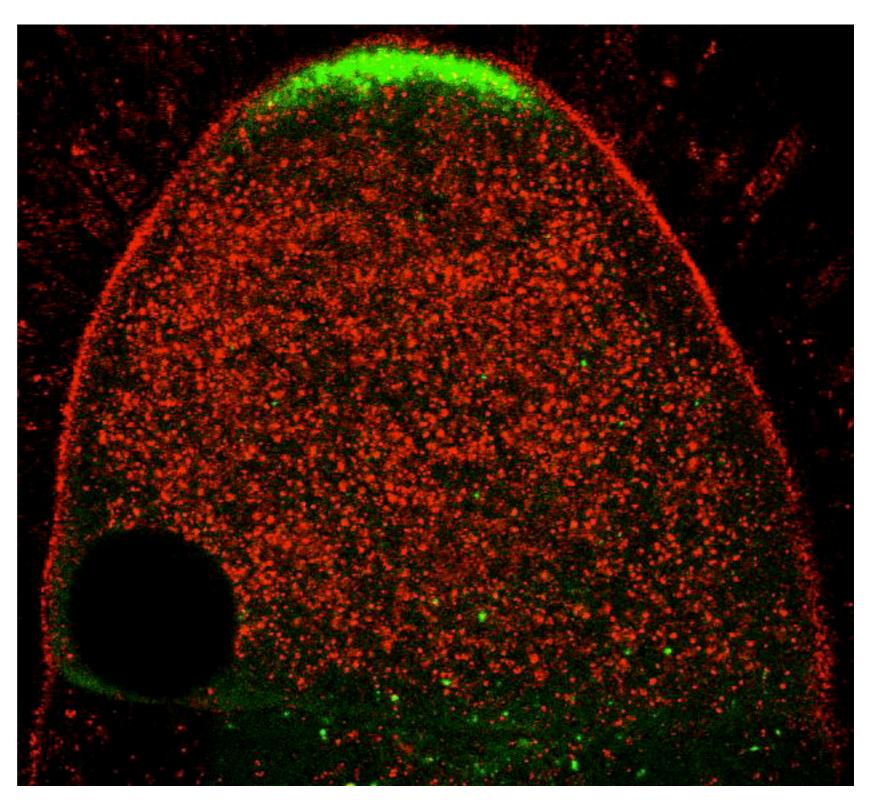
 $< 1\mu m$

Dogic lab (Brandeis)

Flow in cells

Flow & transport in cells

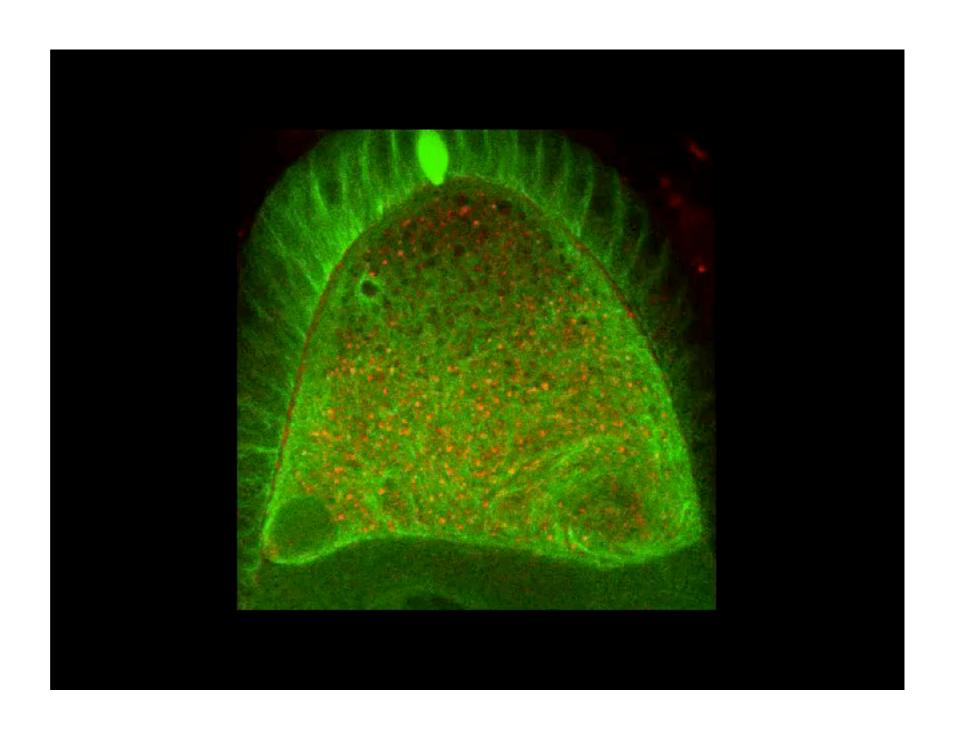
Drosophila embryo

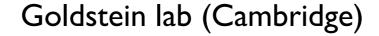


Goldstein lab (Cambridge)

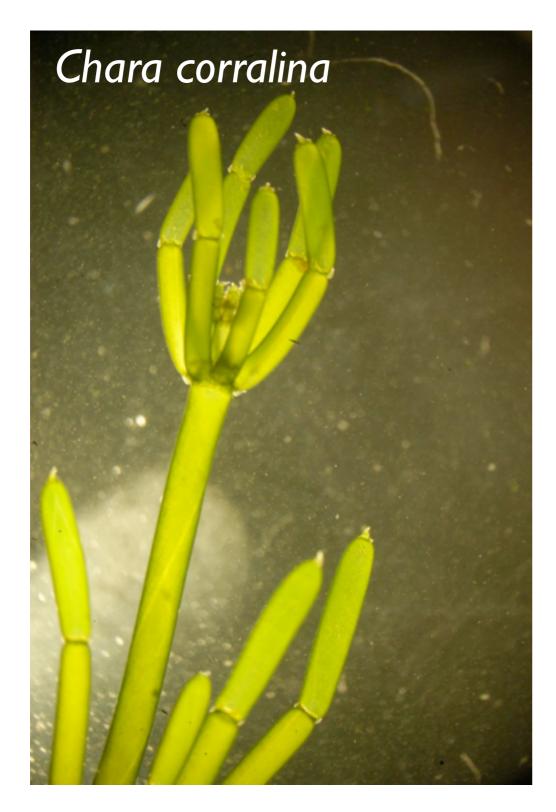
Flow & transport in cells

Drosophila embryo





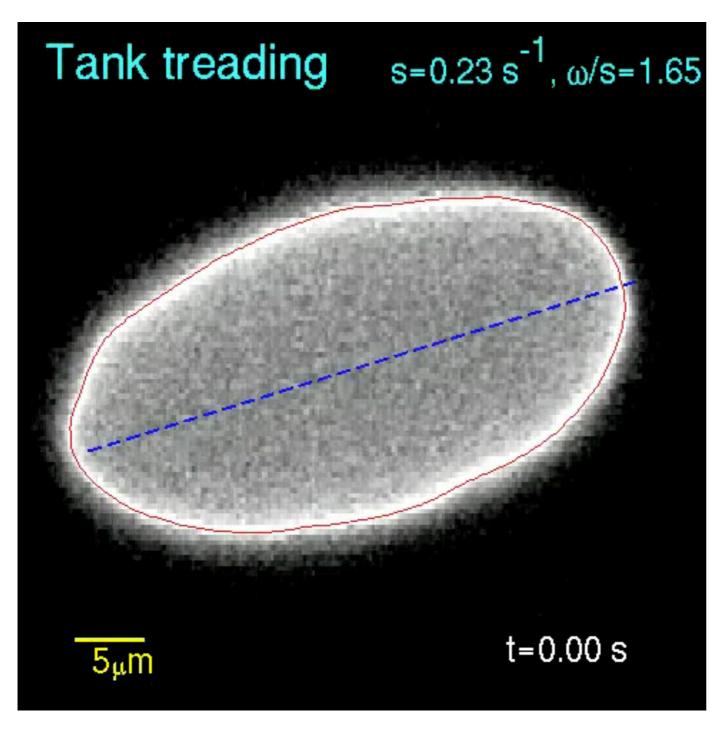
Intracellular transport



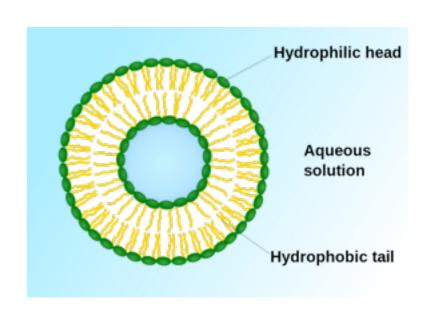
Giant cell

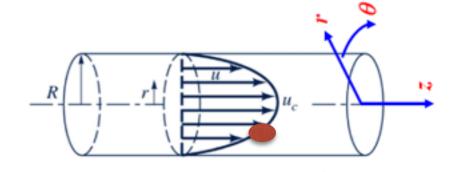
Flow around cells

Vesicles in a shear flow



Vasily Kantsler

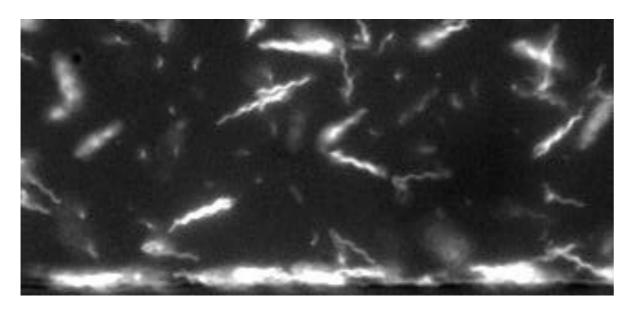


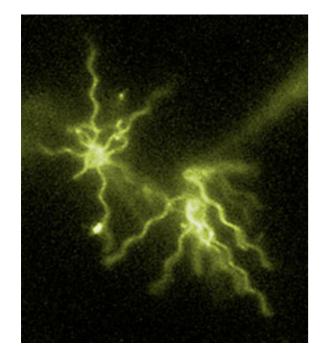


model for blood cells dynamics

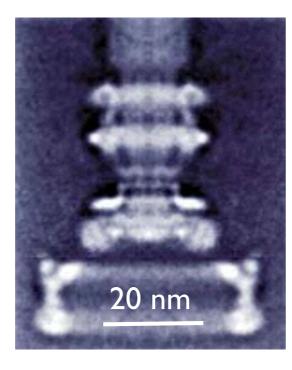
Swimming bacteria

movie: V. Kantsler

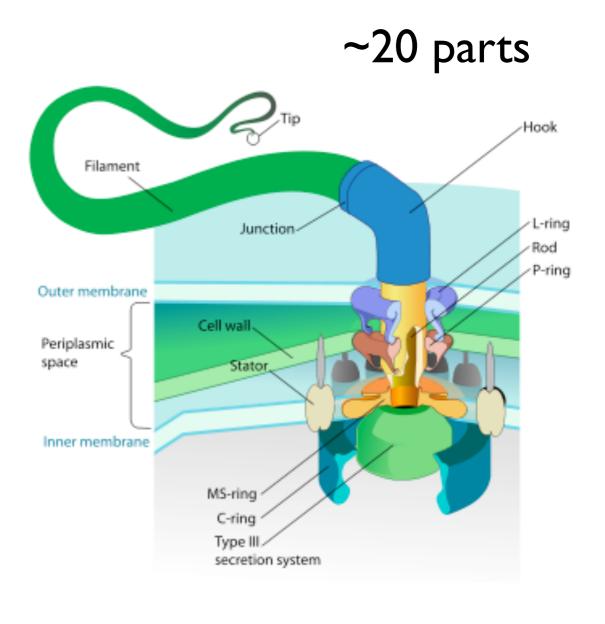




Berg (1999) Physics Today



Chen et al (2011) EMBO Journal



source: wiki

How fast must a cell swim to beat Brownian motion?

$$\langle x^2 \rangle = 2Dt$$

$$D = \frac{kT}{6\pi\eta_0 a}$$

How fast must a cell swim to beat Brownian motion?

$$\langle x^2 \rangle = 2Dt$$

$$D = \frac{kT}{6\pi\eta_0 a}$$

$$kT = 4 \times 10^{-21} \,\mathrm{J}$$
$$a \sim 1 \mu m$$

$$\gamma_S = 6\pi \eta a \sim 2 \times 10^{-8} \,\mathrm{kg/s}$$

How fast must a cell swim to beat Brownian motion?

$$\langle x^2 \rangle = 2Dt$$

$$D = \frac{kT}{6\pi\eta_0 a}$$

$$kT = 4 \times 10^{-21} \,\mathrm{J}$$

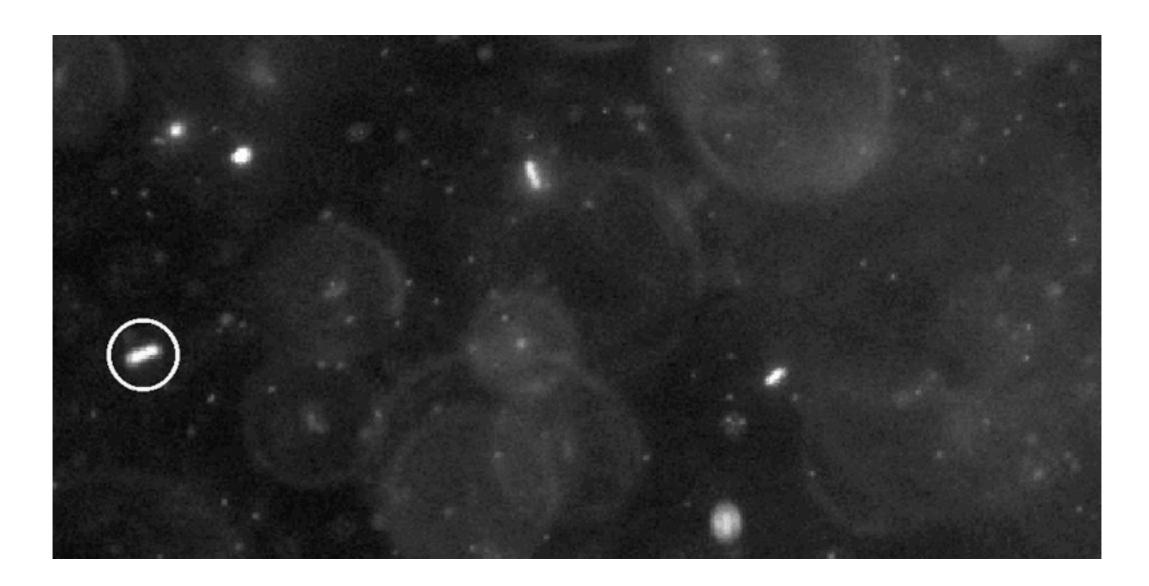
$$a \sim 1 \mu m$$

$$\gamma_S = 6\pi \eta a \sim 2 \times 10^{-8} \,\mathrm{kg/s}$$

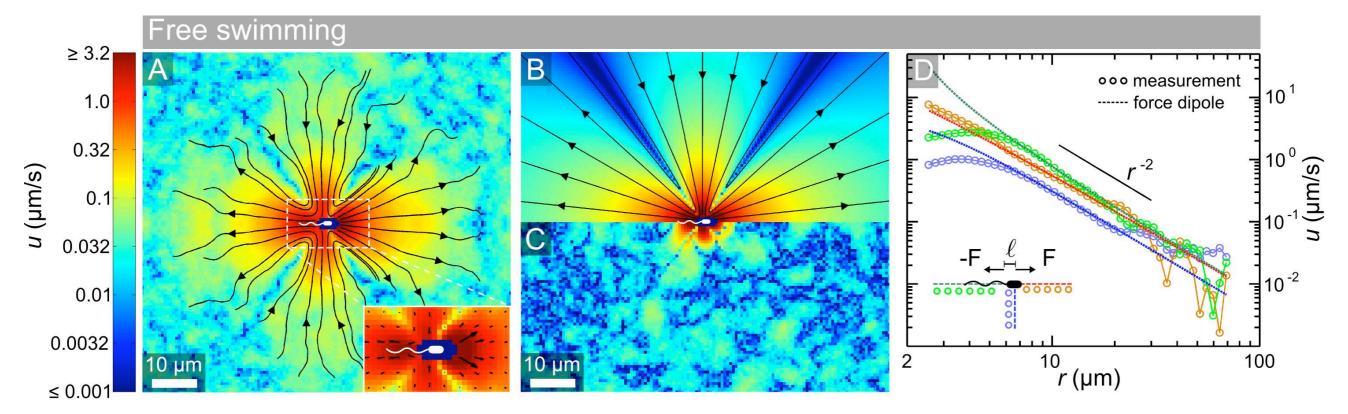
Hence, we find for the diffusion constant

$$D \sim 0.2 \, \mu \mathrm{m}^2/\mathrm{s}$$

Assuming a run length $\sim 1\,\mathrm{s}$, Brownian motion would move a micron-sized bacterium by approximately $0.5\,\mu\mathrm{m}$ per second. Thus a bacterium should swim at last 5-10 $\mu\mathrm{m/s}$, which is close to typical swim bacterial speeds.



E.coli (non-tumbling HCB 437)



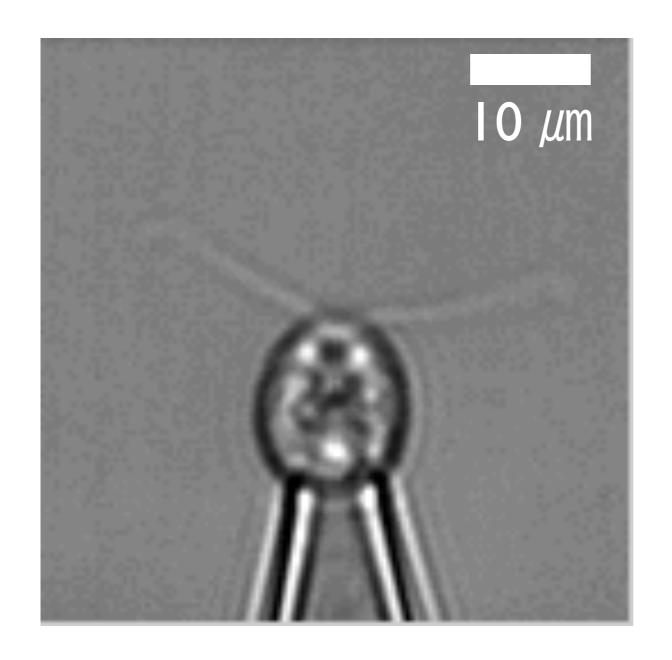
$$\boldsymbol{u}(\boldsymbol{r}) = \frac{A}{|\boldsymbol{r}|^2} \left[3(\hat{\boldsymbol{r}}.\hat{\boldsymbol{d}})^2 - 1 \right] \hat{\boldsymbol{r}}, \quad A = \frac{\ell F}{8\pi\eta}, \quad \hat{\boldsymbol{r}} = \frac{\boldsymbol{r}}{|\boldsymbol{r}|}$$

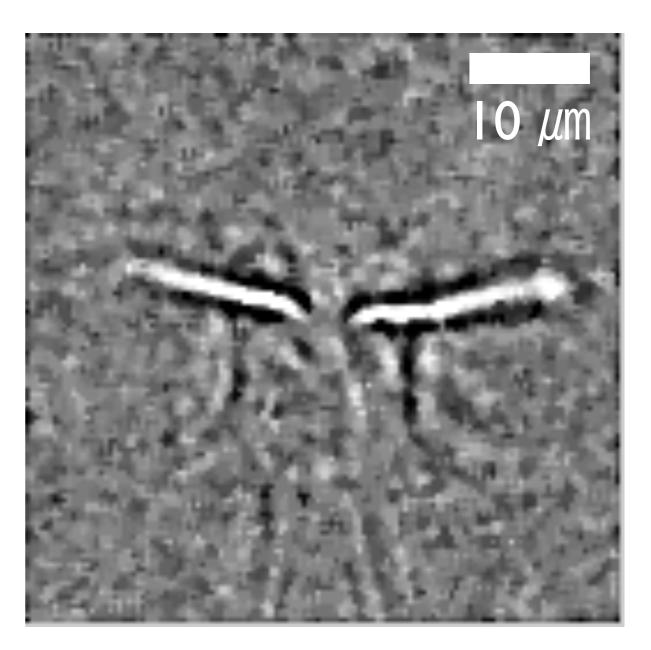
$$V_0 = 22 \pm 5 \mu \text{m/s}$$

 $\ell = 1.9 \mu \text{m}$
 $F = 0.42 \text{ pN}$

weak 'pusher' dipole

Chlamydomonas alga

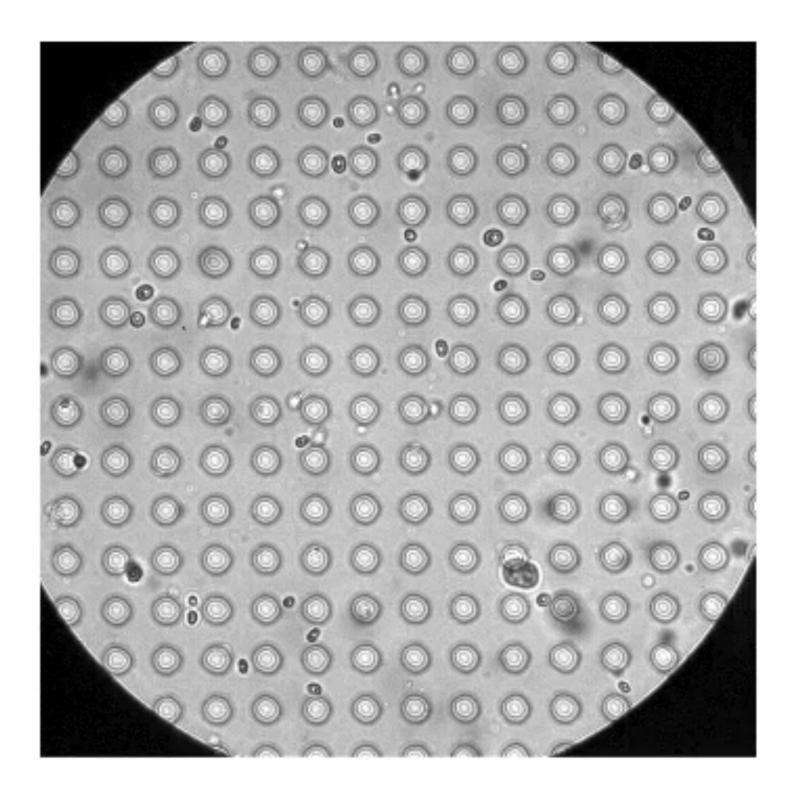




~ 50 beats / sec

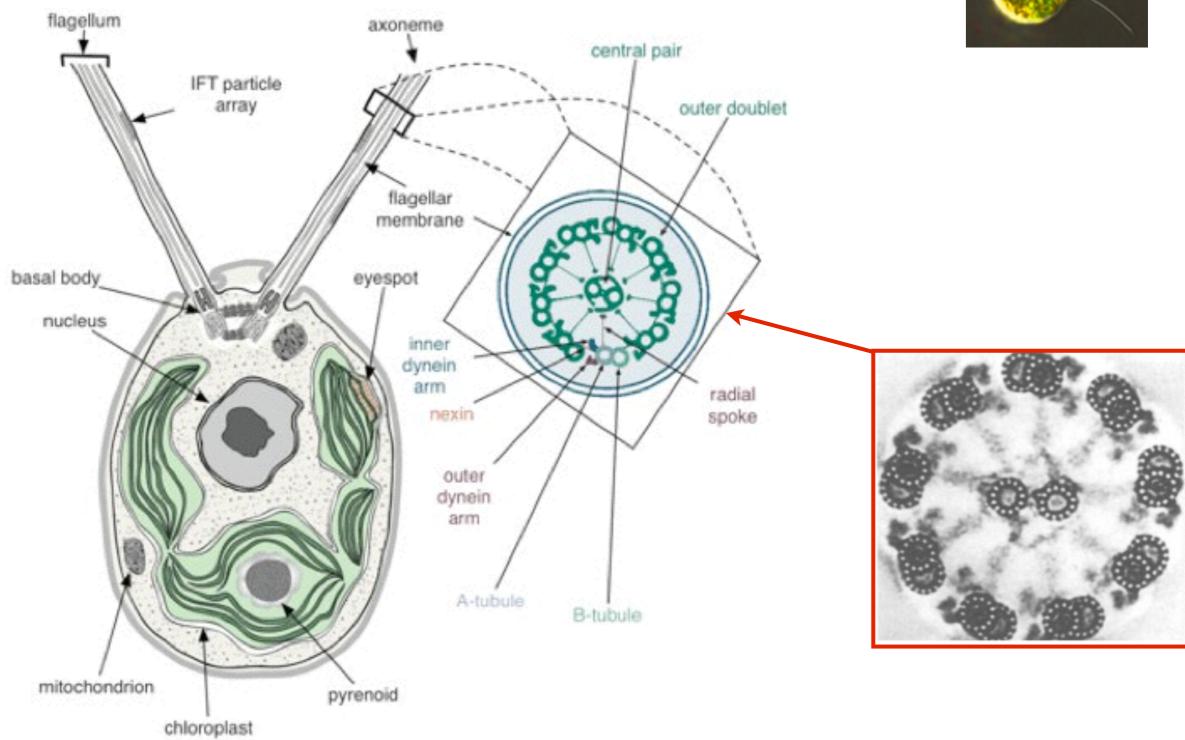
speed $\sim 100 \, \mu \text{m/s}$

Goldstein et al (2011) PRL

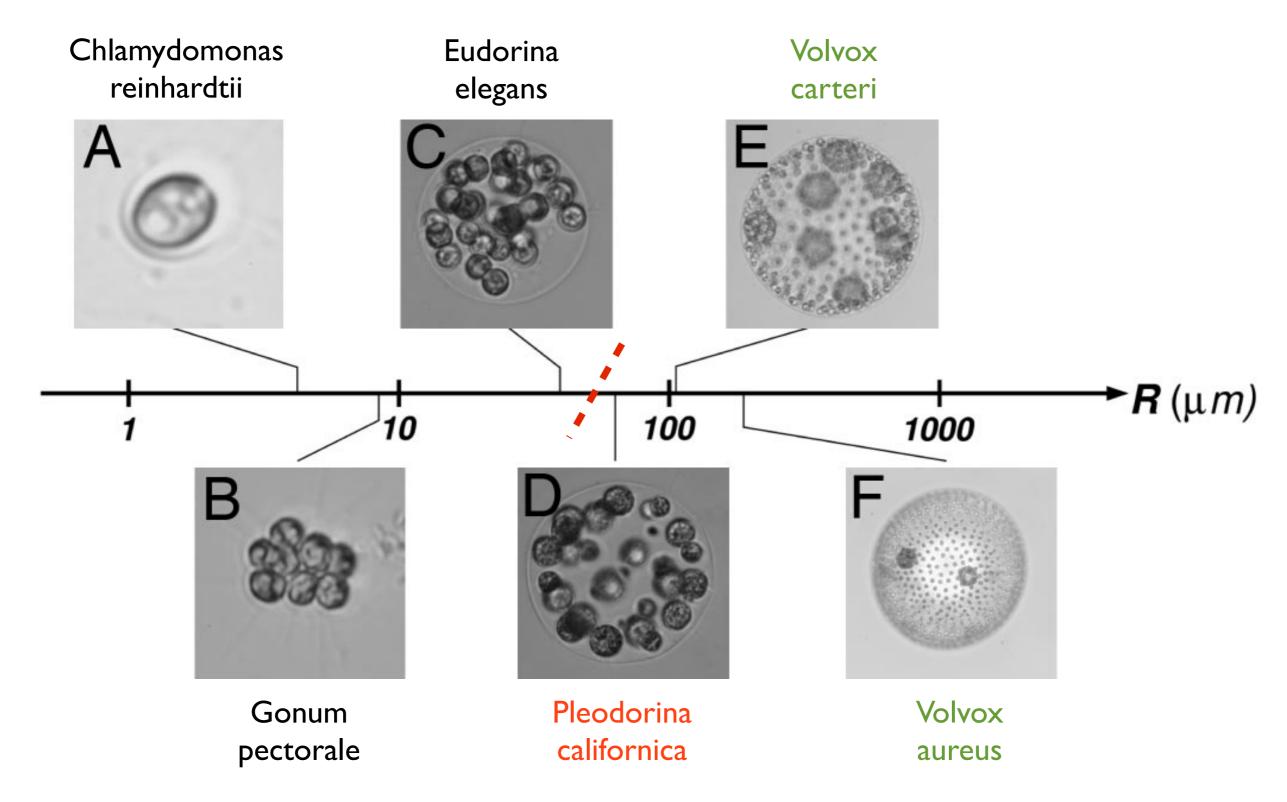


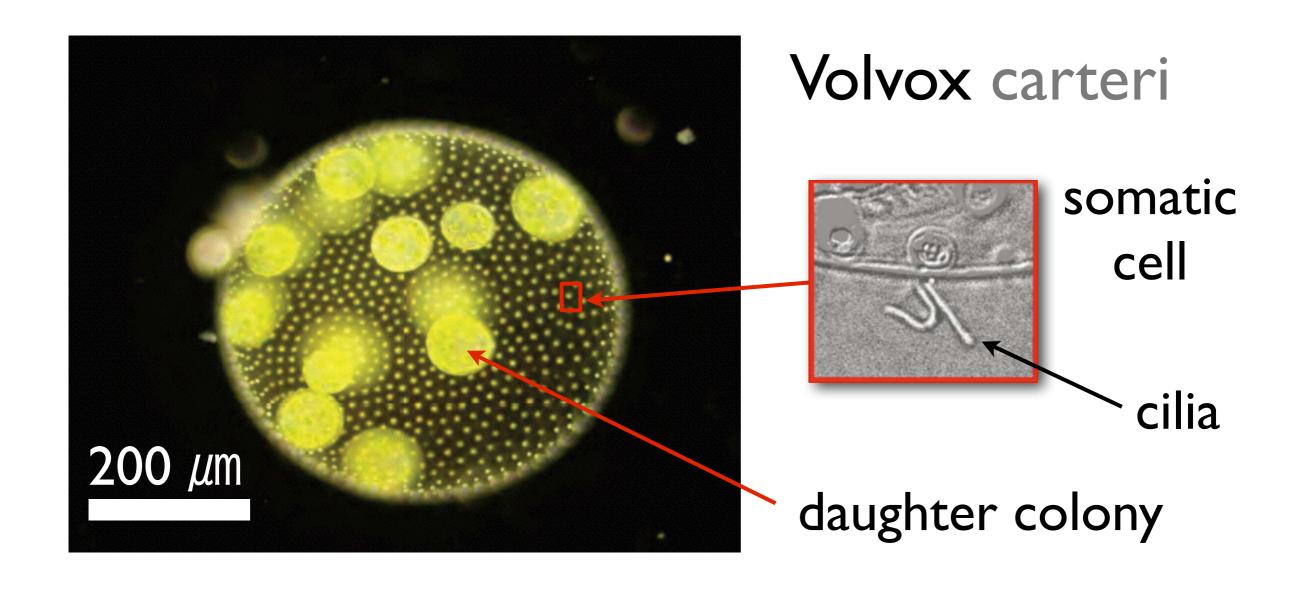
Video: Vasily Kantsler

Chlamydomonas

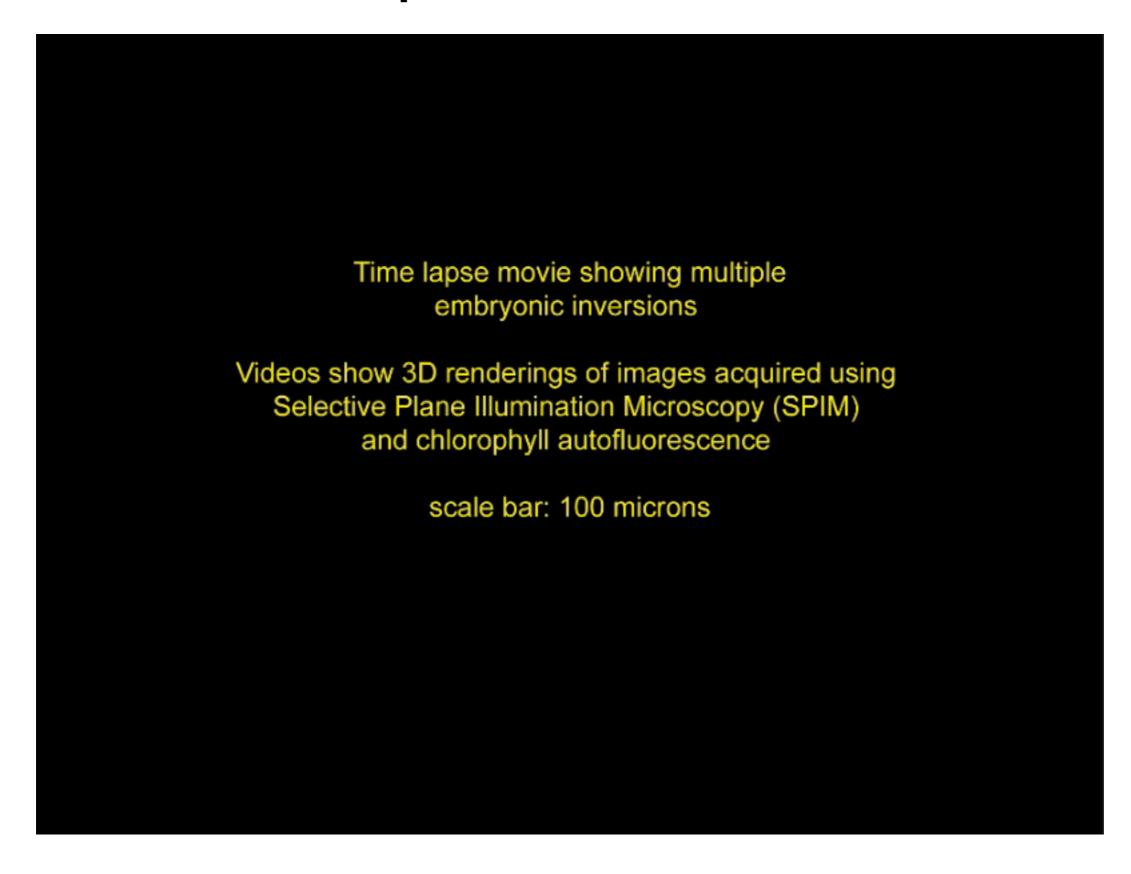


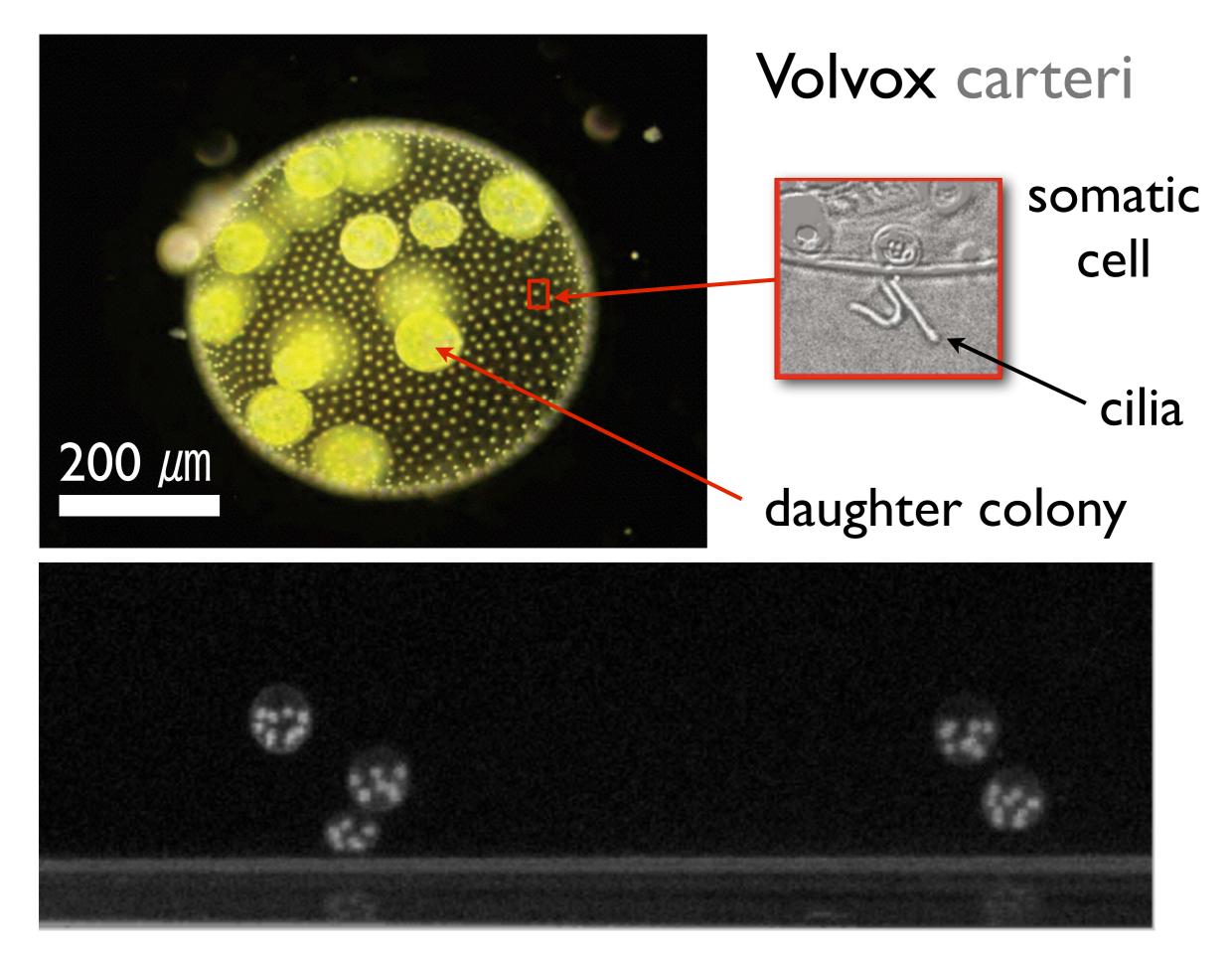
Evolution of multicellularity





Asexual reproduction & inversion





t = 0.002 sec

Volvox

Meta-chronal waves

Brumley et al (2012) PRL

Ecological implications & technical applications

Sedimentation

Mississippi

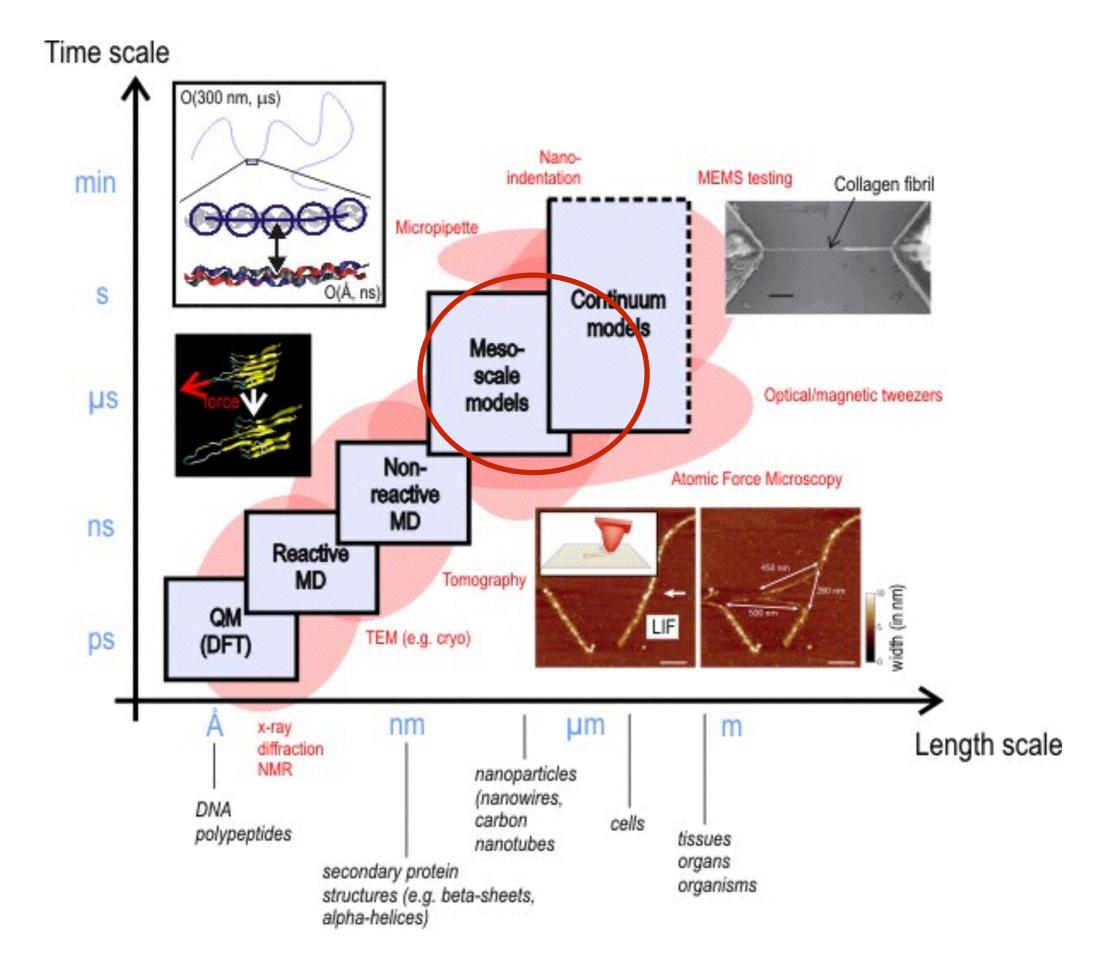
NASA Earth Observatory

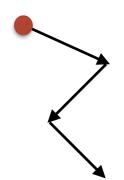
Sedimentation

Particle separation

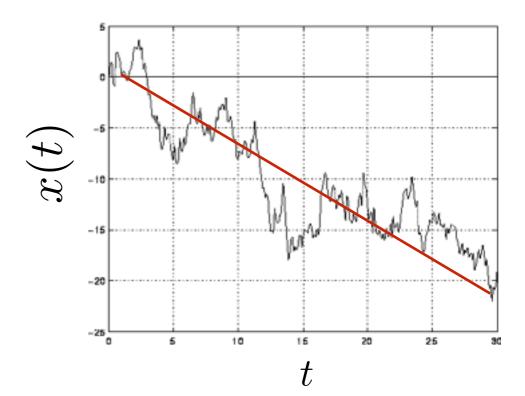
Brownian motion of small objects in fluids is biologically and technologically relevant (and interesting)

How can we describe these phenomena mathematically?





Basic idea



Split dynamics into

- deterministic part (drift)
- random part (diffusion, "noise")

$$\dot{x}(t) = f(x(t)) + \sqrt{2D} \,\xi(t)$$

Stochastic Differential Equation

Over-damped dynamics

$$m\ddot{x}(t) = F(x(t)) + S(\dot{x}(t)) + L(t)$$

$$m\ddot{x}(t) = F(x(t)) - \gamma \dot{x}(t) + L(t)$$

Neglect inertia (Re=0):

$$m\ddot{x}(t) \rightarrow 0$$

$$0 = F(x(t)) - \gamma \dot{x}(t) + L(t)$$

$$\dot{x}(t) = f(x(t)) + \sqrt{2D} \, \xi(t)$$

Langevin equation

$$\dot{x}(t) = f(x(t)) + \sqrt{2D} \,\xi(t)$$

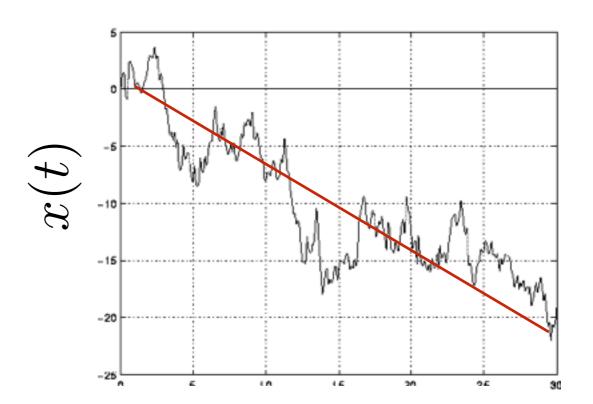
How can we characterize randomness?

Continuous representation of Brownian trajectories?

1.2 Brownian motion (constant drift)

$$\dot{X}(t) = u + \sqrt{2D} \, \xi(t)$$

$$dB(t) = \xi(t) dt$$



$$dX(t) = u dt + \sqrt{2D} dB(t)$$

SDE

B(t): Wiener process

Wiener process

$$dX(t) = u dt + \sqrt{2D} dB(t). \tag{1.25}$$

Here, dX(t) = X(t + dt) - X(t) is increment of the stochastic particle trajectory X(t), whilst dB(t) = B(t + dt) - B(t) denotes an increment of the standard Brownian motion (or Wiener) process B(t), uniquely defined by the following properties³:

- (i) B(0) = 0 with probability 1.
- (ii) B(t) is stationary, i.e., for $t > s \ge 0$ the increment B(t) B(s) has the same distribution as B(t s).
- (iii) B(t) has independent increments. That is, for all $t_n > t_{n-1} > \ldots > t_2 > t_1$, the random variables $B(t_n) B(t_{n-1}), \ldots, B(t_2) B(t_1), B(t_1)$ are independently distributed (i.e., their joint distribution factorizes).
- (iv) B(t) has Gaussian distribution with variance t for all $t \in (0, \infty)$.
- (v) B(t) is continuous with probability 1.

The probability distribution \mathbb{P} governing the driving process B(t) is commonly known as the Wiener measure.

Langevin equation

$$dX(t) = u dt + \sqrt{2D} dB(t). \tag{1.25}$$

Although the derivative $\xi(t) = dB/dt$ is not well-defined mathematically, Eq. (1.25) is in the physics literature often written in the form

$$\dot{X}(t) = u + \sqrt{2D}\,\xi(t). \tag{1.26}$$

The random driving function $\xi(t)$ is then referred to as Gaussian white noise, characterized by

$$\langle \xi(t) \rangle = 0 , \qquad \langle \xi(t)\xi(s) \rangle = \delta(t-s),$$
 (1.27)

with $\langle \cdot \rangle$ denoting an average with respect to the Wiener measure.

$$\delta(x) = \begin{cases} +\infty, & x = 0 \\ 0, & \text{otherwise} \end{cases} \qquad f(y) = \int_{-\infty}^{+\infty} dx \ \delta(x - y) f(x)$$

Dirac's Delta-function

Mean displacement

$$\dot{X}(t) = \sqrt{2D} \; \xi(s)$$

Direct integration with X(0) = 0

$$X(t) = \sqrt{2D} \int_0^t ds \, \xi(s)$$

Averaging

$$\langle X(t)\rangle = \left\langle \sqrt{2D} \int_0^t ds \, \xi(s) \right\rangle = \sqrt{2D} \int_0^t ds \, \langle \xi(s)\rangle = 0$$

$$\langle \xi(t)\rangle = 0$$

Mean square displacement

$$X(t) = \sqrt{2D} \int_0^t ds \, \xi(s)$$

$$\langle X(t)^2 \rangle = \left\langle \left[\sqrt{2D} \int_0^t ds \, \xi(s) \right] \cdot \left[\sqrt{2D} \int_0^t du \, \xi(u) \right] \right\rangle$$

$$= \left\langle 2D \int_0^t ds \int_0^t du \, \xi(s) \cdot \xi(u) \right\rangle$$

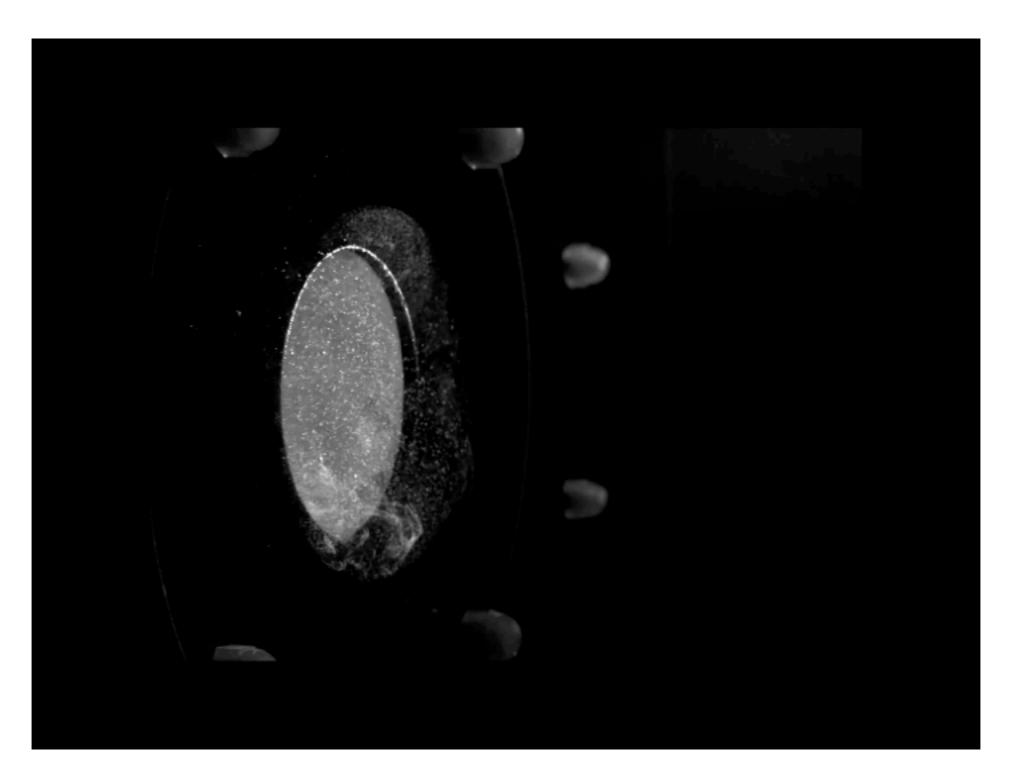
$$= 2D \int_0^t ds \int_0^t du \, \langle \xi(s) \cdot \xi(u) \rangle$$

$$= 2D \int_0^t ds \int_0^t du \, \delta(s-u)$$

$$= 2D \int_0^t ds$$

$$= 2Dt$$

Knotted water



Irvine lab (Chicago)

