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1 Geometric Series

In mathematics an infinite series is a sum of infinitely many numbers. Sometimes, such a sum
can be added up to produce a finite answer, but this is not always the case. For example,

1 + 1 + 1 + 1 + 1 + · · · =∞. (1.1)

Or, to illustrate even worse behaviour: What is the answer to

1− 1 + 1− 1 + 1− 1 + . . . ? (1.2)

These series cannot be evaluated and are said to diverge. In order to introduce the notion
of a convergent series, one that can be evaluated, let us begin by considering the following
series:

S :=
1

2
+

1

4
+

1

8
+

1

16
+

1

32
+ · · · =

∞∑
n=1

1

2n
. (1.3)

Each term is equal to one half of the previous term. Since we can deal with finite sums, let
us consider

SN :=
1

2
+

1

4
+

1

8
+ · · ·+ 1

2N
. (1.4)

Then we notice that
1

2
SN =

1

4
+

1

8
+

1

16
+ · · ·+ 1

2N+1
, (1.5)
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so that on subtracting (1.5) from (1.4), we see that

1

2
SN =

1

2
− 1

2N+1
(1.6)

and hence that

SN = 1− 1

2N
. (1.7)

Clearly SN approaches 1 asN gets larger and larger. Indeed the series does sum to 1 according
to the following well-established definition:

The series
∑∞

n=1 an is said to converge to L if for any ε > 0, there exists a natural number N
such that for every n ≥ N we have |Sn−L| < ε. When this is the case we write

∑∞
n=1 an = L.

Was there anything special about the value of 1/2 used here? A little more thought might
lead us to consider the series

S = r + r2 + r3 + r4 + r5 + · · · =
∞∑
n=1

rn. (1.8)

A series like this, with a common ratio between consecutive terms is called a geometric
series. If r = 1, then we have the series in (1.1). If r = −1, then we have the series in
(1.2). So assume that |r| 6= 1. Now let us try to argue in exactly the same way as before:
Defining SN = r + r2 + · · · + rN , we see that rSN = r2 + r3 + . . . rN+1 and therefore that
(1− r)SN = r − rN+1. Dividing through by (1− r) we get that

SN =
r

1− r
− rN+1

1− r
. (1.9)

Now if |r| < 1, we can let N →∞ in the line above and deduce that

S =
r

1− r
. (1.10)

If |r| > 1, then the series diverges. So there was nothing special about 1/2, but we needed
to use a number smaller than 1 in modulus. Using the above formula, it is easy to work out,
for example, that

1

3
+

1

9
+

1

27
+

1

81
+ · · · = 1

2
. (1.11)

2 Ratio and Root Tests

The series we considered in the previous section were those series
∑∞

n=1 an for which the
equation

an+1 = ran (2.1)

held true for some fixed number r and for every n ≥ 1. When |r| < 1 we saw that such series
converged. What would happen if the above equation were only approximately true? Surely
if it were nearly true, the series would still converge, i.e. a series

∑∞
n=1 an for which

an+1 ≈ ran (2.2)
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for some r with |r| < 1 would surely be convergent, provided we correctly interpret the ‘≈’
sign. Thinking along these lines leads us to the ratio test, the correct statement of which is:

Ratio Test. Suppose that the series
∑∞

n=1 an is such that∣∣∣an+1

an

∣∣∣→ r as n→∞. (2.3)

If r < 1, then the series converges. If r > 1, then the series diverges. If r = 1, then the test
is inconclusive.

For example, consider
∞∑
n=1

(−1)n+1 n

2n
. (2.4)

The successive ratios here are ∣∣∣an+1

an

∣∣∣ =
n+ 1

2n+1

2n

n
=

1

2
+

1

2n
, (2.5)

which tends to 1/2 as n→∞. And so, by the ratio test, this series converges.
Another way to characterize those series that we considered in the previous section is

those for which the equation
n
√
|an| = r (2.6)

holds true for some fixed r and for every n ≥ 1. Again, what if this were only approximately
true?

Root Test. Suppose that the series
∑∞

n=1 an is such that

n
√
|an| → r as n→∞. (2.7)

If r < 1, then the series converges. If r > 1, then the series diverges. If r = 1, then the test
is inconclusive.

For example, consider
∞∑
n=1

(
n2 + 2n+ 3

3n2 + n− 1

)n

. (2.8)

The nth root of the nth term is

n
√
|an| =

n2 + 2n+ 3

3n2 + n− 1
=

1 + 2/n+ 3/n2

3 + 1/n− 1/n2
(2.9)

which tends to 1/3 as n→∞. And so, by the root test, this series converges.
With these tests having been memorized, there is a sense in which any series the question

of the convergence of which is reducible to one of these tests is less interesting, so we turn
our attention to those series the convergence of which cannot be settled easily by the root or
ratio tests.
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3 The Harmonic Series

The following series is called the harmonic series:

1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+ · · · =

∞∑
n=1

1

n
. (3.1)

Does it converge or diverge? Note that the ratio test is inconclusive, as is the root test (this
is slightly harder to see but it amounts to the fact that n1/n → 1 as n → ∞). Getting
ones head around the divergence of the harmonic series is a classic issue one must face when
learning basic analysis. The following proof of the divergence supposedly goes back to the
14th Century:

∞∑
n=1

1

n
= 1 +

∞∑
k=1

2k+1−1∑
n=2k

1

n

≥ 1 +
∞∑
k=1

2k · 1

2k+1

= 1 +
∞∑
k=1

1

2

=∞.

Thinking more about exactly why this proof works leads to the Cauchy Condensation Test,
which we will not discuss in detail here.

Remark 3.1. The partial sums

HN = 1 +
1

2
+

1

3
+ · · ·+ 1

N
(3.2)

are called the harmonic numbers. It can be shown that HN ≈ logN . To give you some
idea about just how slowly this sum diverges, observe that log 1030 < 100 (so after summing
1030 terms of the series, the total is less than 100). Jeffrey Lagarias proved in 2001 that the
conjecture ∑

d|n

d ≤ Hn + eHn logHn (3.3)

for all n ≥ 1 is equivalent to the Riemann Hypothesis, which is one of the great unsolved
conjectures in number theory.

A more modern trick to show the divergence of the harmonic series would be to compare
it to a divergent integral:

∞∑
n=1

1

n
≥
∞∑
n=1

∫ n+1

n

1

x
dx =

∫ ∞
1

1

x
dx =∞. (3.4)

Similarly, the convergence of the series

1 +
1

4
+

1

9
+

1

16
+

1

25
+

1

36
+ · · · =

∞∑
n=1

1

n2
(3.5)
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can be established by comparison with an integral:

∞∑
n=1

1

n2
≤ 1 +

∞∑
n=2

∫ n

n−1

1

x2
dx = 1 +

∫ ∞
1

1

x2
dx = 2. (3.6)

Thinking more along these lines leads to the following test:

Integral Test. Let f : [0,∞)→ [0,∞) be a monotone decreasing function. For any number
N , the series

∑∞
n=N f(n) converges if and only if the corresponding integral

∫∞
N f(x)dx is

finite.

Remark 3.2. Since the integral
∫∞
1

1
x1+εdx is finite for any ε > 0, the integral test tells us

that the series
∑∞

n=1
1

n1+ε converges for every ε > 0 but diverges for ε = 0.

Remark 3.3. One can also consider the alternating harmonic series:

1− 1

2
+

1

3
− 1

4
+

1

5
− 1

6
+ · · · =

∞∑
n=1

(−1)n+1 1

n
. (3.7)

This series converges to log 2 but has the remarkable property that given any real number α,
the terms can be rearranged into a series that converges to α.

4 Large Subsets of Natural Numbers

The first geometric series we considered, the harmonic series and the sums of the reciprocals
of the square numbers are all series of the following form: Given an infinite subset A ⊂ N,
we define

S[A] :=
∑
n∈A

1

n
. (4.1)

Based on whether or not this series converges, we can divide the set of infinite subsets of N
into two classes. We will call a subset A ⊂ N large if S[A] =∞. We showed in the previous
section that N itself is large, but that the set of square numbers is not large.

For example, Start with N and remove any natural numbers whose decimal expansion
contains a 7. Call the remaining set A7. Is A7 large? On the one hand we are simply in
a situation where we can use 9 digits instead of 10 digits to build numbers from, so surely
nothing has really changed and A7 remains large. On the other hand, it seems we have
removed a lot of numbers since for a large number it seems almost overwhelmingly likely that
it contains a 7 somewhere, so this heuristic suggest A7 is not large. This latter intuition is
correct. We split the sum up using the number of digits of n; observe that k-digit numbers
n are precisely those satisfying 10k−1 ≤ n ≤ 10k − 1, so∑

n∈A7

1

n
=

∞∑
k=1

∑
n∈A7

n has k digits

1

n
=

∞∑
k=1

∑
n∈A7

10k−1≤n≤10k−1

1

n
(4.2)

Now, the number of k-digit numbers that belong to A7 is exactly

8 · 9k−1, (4.3)
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because there are 8 choices ({1, 2, 3, 4, 5, 6, 8, 9}) for the first digit and 9 choices for each of
the remaining (k − 1) digits. And, if n is such a k-digit number, then

1

n
≤ 1

10k−1
. (4.4)

So,

∞∑
k=1

∑
n∈A7

10k−1≤n≤10k−1

1

n

≤
∞∑
k=1

(no. of k digit numbers in A7) ×
1

10k−1

≤
∞∑
k=1

8 · 9k−1

10k−1

= 8
∞∑
k=1

(
9

10

)k−1

<∞,

where we have summed a geometric series in the last step. So A7 is not large.

4.1 The Set of Prime Numbers is Large

The set of prime numbers is large, which is somewhat surprising because we expect primes to
become rare quite quickly as numbers get very large. Compare this with the fact that the set
of perfect squares is not large and yet one can always predict where the next perfect square
is (it’s only (n+ 1)2 − n2 = 2n+ 1 numbers away!).

To prove that the set of primes is large, we assume for the sake of contradiction that it
is not large: This means that there is some prime, the kth prime pk, say, which is such that
the sum over all primes larger than pk is less than 1/2, i.e.∑

p>pk

1

p
< 1/2. (4.5)

Now we fix an N ≥ 1 and ask the question: How many numbers between 1 and N are divisible
by some prime p that is bigger than pk? Well, if a number is divisible by pk+1, then it is a
multiple of pk+1 and there at at most N/pk+1 such numbers between 1 and N . Similarly, at
most N/pk+2 such numbers are divisible by pk+2 and so forth. Therefore at most

N

pk+1
+

N

pk+2
+ · · · = N

∑
p>pk

1

p
< N/2 (4.6)

of the numbers between 1 and N are divisible by some prime that is bigger than pk. The rest
(i.e. at least N/2) of the numbers between 1 and N are divisible only by the primes that
are less than or equal to pk. Let us estimate this independently from above: So we ask how
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many numbers between 1 and N are divisible only by the primes that are less than or equal
to pk? Well for each such number n, write it as

n = sm2. (4.7)

where s is a square-free integer 1. Since n is a product of powers of p1,...,pk, there are at
most 2k possible choices for s. Then, since n ≤ N , we have that m2 ≤ N , and thus there are
at most

√
N possible choices for m. Thus we have that

N/2 ≤ 2k
√
N (4.8)

for some fixed k and for every N . This is of course false and this contradiction proves that
the set of primes is large.

Remark 4.1. 1. Erdos conjectured that every large set contains arbitrarily long arithmetic
progressions. There has been little progress on this conjecture. In fact, it is now known
whether or not a large set must contain a single 3-term arithmetic progression. The best
possible result in this direction is implied by the work of Tom Sanders ([San11]). It was
however proved by Ben Green and Terence Tao in 2004 that the primes contain arbitrarily
long arithmetic progressions ([GT08]).

2. The Twin Prime conjecture states that lim infn(pn+1 − pn) = 2 ( i.e. there are infinitely
many pairs of primes of the form p, p+2). It is still open but it was shown in 2013 by Yitang
Zhang ([Zha13]) that

lim inf
n

(pn+1 − pn) ≤ C. (4.9)

Zhang got C = 70, 000, 000, but since then the bound has been improved by James Maynard,
Terence Tao and a Polymath project. It is claimed that the current ‘World Record’ is

lim inf
n

(pn+1 − pn) ≤ 246. (4.10)

To relate this to our notion of large sets, consider that Brun proved in 1919 that the set of
Twin primes is small (if it were large it would of course imply the twin prime conjecture,
which is still open. In fact, if the limit of this sum, Brun’s constant, were irrational it would
imply the twin prime conjecture).
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1This means that if n = pa11 · · · · · p
ak
k , then for each ai we write ai = 2bi + εi, where εi ∈ {0, 1} and set

s = pε11 · · · · · p
εk
k and m = pb11 · · · · · p

bk
k
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