SPHERE PACKING PROBLEM SET

IAP MATH LECTURE SERIES

Recall that

$$
D_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n} \mid x_{1}+\cdots+x_{n} \text { is even }\right\}
$$

while E_{8} is the union of D_{8} and the translation of D_{8} by the vector $(1 / 2,1 / 2, \ldots, 1 / 2)$. Equivalently, E_{8} consists of all points $\left(x_{1}, \ldots, x_{8}\right)$ with two properties:
(1) either all coordinates are integers or all coordinates are integers plus $1 / 2$, and
(2) the coordinate sum $x_{1}+\cdots+x_{8}$ is an even integer.

Problems 1-3 should be more doable, although they may take some calculation or thought. Problems 4 and 5 have simple solutions but take more of an insight.

1. How many spheres are tangent to each sphere in the D_{n} packing?
2. What about E_{8} ?
3. Compute the volume of a four-dimensional ball of radius r. (You can use multivariate calculus without worrying about rigorous justification of volume integrals in \mathbb{R}^{4}.) What is the density of the D_{4} sphere packing in \mathbb{R}^{4} ?
4. Recall that the Platonic solids are the regular tetrahedron, cube, octahedron, dodecahedron, and icosahedron. Which ones can occur as cross sections of a four-dimensional hypercube? How do they occur, and why can't the others?
5. Suppose P_{1}, \ldots, P_{10} are any ten points in the plane. Show that there exist closed unit disks D_{1}, \ldots, D_{10} that cover them, such that these disks have disjoint interiors. (Covering means each point P_{i} in contained in some disk D_{j}, and disjoint interiors means that the disks can be tangent, but they can't overlap any more than that.)
