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Reynolds numbers

Boulder Summer School 2011: Introduction to Low Reynolds Number Locomotion
(Notes from Peko Hosoi’s Lecture)

0.1 Reynolds Numbers in Biology

The Reynolds number is dimensionless group that characterizes the ratio of inertial to viscous
forces. It is defined as

Re =
⇥UL

µ
=

UL

�

where ⇥ is the density of the medium the organism is moving through; µ is the dynamic viscosity
of the medium; � is the kinematic viscosity; U is a characteristic velocity of the organism; and L
is a characteristic length scale. When we discuss swimming biological organisms, we are usually
referring to creatures that are moving through water (or through a fluid with material properties
very close to those of water). This means that the material properties µ and ⇥ are fixed1 and the
Reynolds number is roughly determined by the size of the organism.

In general, the characteristic size of the organism and the characteristic swimming velocity are
related. As a rule-of-thumb, the characteristic locomotion velocity, U , in biological organisms is
related to L by U � L/second e.g. for people L � 1 m and we move at U � 1 m/s; bugs are about
L � 1 mm, and they move at about U � 1 mm/s; for microorganisms L � 100 µm and U � 100
µm/s. Obviously this is a very very very very rough estimate and one does not have to think very
hard to come up with exceptions (as is always the case in biology!). However, it serves as a good
starting point to estimate the Reynolds numbers for various biological organisms as illustrated in
the sketch in Figure ??. Note that even for organisms as small as ants, the Reynolds number is
still on the order of 1 (which is not very low). In this lecture we will focus on Re ⇥ 1 which is
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Figure 1: Typical Reynolds numbers for various biological organisms. Reynolds numbers are esti-
mated using the length scales indicated, the “rule-of-thumb” in the text, and material properties
of water.

relevant for single-cell organisms and bacteria.
1For water, � � 10�2cm2/s and ⇥ � 1 g/cm3.
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Laminar (low-Re) flow



For  Re→0   
fluid flow becomes 

reversible !

... except for thermal 
fluctuations



Brownian motion



“Brownian” motionÜbersicht
Brownsche Bewegung - Historischer Überblick

Relativistische Di�usionsprozesse
Fazit

Jan Ingen-Housz (1730-1799)

1784/1785:

http://www.physik.uni-augsburg.de/theo1/hanggi/History/BM-History.html

Jörn Dunkel Di�usionsprozesse und Thermostatistik in der speziellen Relativitätstheorie



Übersicht
Brownsche Bewegung - Historischer Überblick

Relativistische Di�usionsprozesse
Fazit

Robert Brown (1773-1858)

1827: irreguläre Eigenbewegung von Pollen in Flüssigkeit

http://www.brianjford.com/wbbrownc.htm
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irregular motion of pollen in fluid

Linnean Society (London)



Brownian motion

David Walker

Mark Haw
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experimental evidence for 
atomistic structure of matter

Übersicht
Brownsche Bewegung - Historischer Überblick

Relativistische Di�usionsprozesse
Fazit

Jean Baptiste Perrin (1870-1942, Nobelpreis 1926)

Mouvement brownien et réalité moléculaire, Annales de chimie et de
physique VIII 18, 5-114 (1909)

Les Atomes, Paris, Alcan (1913)

� colloidal particles of
radius 0.53µm

� successive positions
every 30 seconds
joined by straight line
segments

� mesh size is 3.2µm

Experimenteller Nachweis der atomistischen Struktur der Materie

Jörn Dunkel Di�usionsprozesse und Thermostatistik in der speziellen Relativitätstheorie

Nobel prize 

and obtains in this way his famous formula

D =
kT

6πη0a
, k =

R

NA

(35)

(R = gas constant).
This was almost simultaneously discovered in Australia by William Suther-

land.
A beauty of the argument is that the exterior force drops out. Similar

equilibrium considerations between systematic and fluctuating forces were
repeatedly made by Einstein.

3.6 Silence, a calculational error, late attention

By 1909 Perrin’s careful measurements of Brownian motion led to a new value
for Avogadro’s number that was significantly different from the value Einstein
had obtained from his thesis work, and also somewhat different from what
he and Planck had deduced from black-body radiation. Einstein then drew
Perrin’s attention to his hydrodynamical method, and suggested its applica-
tion to the suspensions studied by Perrin. Then Jacques Bancelin, a Pupil
of Jean Perrin, checked Einstein’s viscosity formula η = η0(1 + ϕ). Bancelin
confirmed that there was an increase of the viscosity that was independent
of the size of the suspended particles, and only depends on the total volume
they occupy. However, he got a stronger increase. Initially, this increase was
too steep; in the publication Bancelin gives the result η = η0(1 + 2.9ϕ).

On 27 December, 1910 Einstein wrote from Zürich to his former student
and collaborator Ludwig Hopf about the puzzling situation, and then adds:

“I have checked my previous calculations and arguments and found
no error in them. You would be doing a great service in this mat-
ter if you would carefully recheck my investigation. Either there
is an error in the work, or the volume of Perrin’s suspended sub-
stance in the suspended state is greater than Perrin believes.”

Hopf indeed found an error in some differentiation process, and got the
formula (4). Einstein communicated the result to Perrin, and published in
(1911) a correction of his thesis in the Annalen. (By the way, this correction
is the second most quoted paper of Einstein.) New experimental data for
sugar solutions now gave the excellent value

NA = 6.56 × 1023 (36)

for the Avogadro number, in good agreement with the results of other meth-
ods, in particular with Perrin’s determination from the Brownian motion, for
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Relevance in biology

• intracellular transport  	



• intercellular transport 	



• microorganisms must beat BM to achieve directed 

locomotion	



• tracer diffusion = important experimental “tool” 	



• generalized BMs (polymers, membranes, etc.)
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Nano-spheres in water
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Flow in cells



Flow & transport in cells

Goldstein lab (Cambridge)

Drosophila 
embryo



Flow & transport in cells

Goldstein lab (Cambridge)

Drosophila 
embryo



http://damtp.cam.ac.uk/user/gold/movies.html

Intracellular transport
Chara corralina

Giant cell

http://damtp.cam.ac.uk/user/gold/movies.html


Flow around cells



Vesicles in a shear flow

Vasily Kantsler

model for	


blood cells	


dynamics
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Swimming bacteria

20 nm

Berg (1999) Physics Today

source: wiki

movie:  V. Kantsler

Chen et al (2011) EMBO Journal

~20 parts
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How fast must a cell swim	


to beat Brownian motion?
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1.10 Solutions

1.10.1 Problem 1: Order-of-magnitude estimates

(a) How heavy is a bacterium? Assuming a volume v = 1µm3 and a mass density
⇢ = 1000 kg/m3 (water), we find

m = ⇢v ⇠ 10�18 ⇥ 103 kg = 1 fg (1.159a)

(b) How fast must a bacterium swim so that swimming makes sense? At room tem-
perature, kT = 4 ⇥ 10�21 J. Stokes drag coe�cient of a sphere of radius a = 1µm in
water

�S = 6⇡⌘a ⇠ 2⇥ 10�8 kg/s

Hence, we find for the di↵usion constant

D ⇠ 0.2µm2/s

Assuming a run length ⇠ 1 s, Brownian motion would move a micron-sized bacterium by
approximately 0.5µm per second. Thus a bacterium should swim at last 5-10 µm/s, which
is close to typical swim bacterial speeds.

(c) How large is the e↵ective di↵usion constant of bacteria that perform run-and-tumble
motion with run periods ⌧ ⇠ 1 s?

Db ⇠ V 2⌧ ⇠ 102 µm2/s

(d) How large are the self-propulsion force and the torque generated by a bacterial motor?
Force

F ⇠ �SV ⇠ 2⇥ 10�8 kg/s⇥ 10µm/s = 0.2 pN (1.159b)

Torque

T ⇠ (a/2)⇥ F ⇠ 10�19 Nm = 10�12 dyn · cm (1.159c)

Both estimates are very close to experimentally measured values.

1.10.2 Problem 2: Brownian motion

(a) The probability P (N,K) := P[XN/` = K] to be at an even position x/` = K � 0
after N steps is given by the binomial coe�cient

P (N,K) =

✓
1

2

◆N ✓
N

N�K
2

◆

=

✓
1

2

◆N
N !

((N +K)/2)! ((N �K)/2)!
(1.160)
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.

Results
Bacterial flow field far from surfaces.To resolve the minis-
cule flow field created by individual bacteria, we tracked gfp-
labeled, non-tumbling E. coli as they swam through a suspen-
sion of fluorescent tracer particles. For measurements far from
walls, we focused on a plane 50 µm from the top and bottom
surfaces of the sample chamber, and recorded ∼2 terabytes of
movie data. In this data we identified ∼104 rare events when
cells swam in the focal plane for > 1.5 s. By tracking the
fluid tracers in each of the rare events, relating their position
and velocity to the position and orientation of the bacterium,
and performing an ensemble average over all tracers, we re-
solved the time-averaged flow field in the E. coli swimming
plane down to 0.1% of the mean swimming speed V0 = 22± 5
µm/s. As E. coli rotate about their swimming direction, their
time-averaged flow field in three dimensions is cylindrically
symmetric. Our measurements capture all components of this
cylindrically symmetric flow, except the azimuthal flow due to
the rotation of the cell about its body axis. The topology of
the measured flow field (Fig. 1A) is the same as that of a
force dipole flow (Fig. 1B), defined by

u(r) =
A
|r|2

h

3(r̂.d̂)2 − 1
i

r̂, A =
ℓF
8πη

, r̂ =
r

|r|
, [1]

where F is the dipole force, ℓ the distance separating the force
pair, η the viscosity of the fluid, d̂ the unit orientation vector
(swimming direction) of the bacterium, and r the distance
vector relative to the center of the dipole. Yet there are some
differences close to the cell body as shown by the residual of

the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
achieved by fitting two opposite force monopoles (Stokeslets)
at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.

Bacterial flow field near a surface. Having found that a force
dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.
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at variable locations along the swimming direction to the far
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dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
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and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
fluid drag on the flagellar bundle.
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a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.
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field (r > 8 µm). From the best fit, which is insensitive to
the specific fitting routines and fitting regions, we obtain the
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value of F is consistent with optical trap measurements [45]
and resistive force theory calculations [46]. It is interesting to
note that in the best fit, the cell drag Stokeslet is located 0.1
µm behind the center of the cell body, possibly reflecting the
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this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
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Fig. 1. Average flow field created by a single freely-swimming bacterium. (A) Experimentally measured flow field far from a surface. Stream lines indicate local direction of
flow. (B) Best fit force-dipole model, and (C) residual flow field, obtained by subtracting the best-fit dipole from the experimentally measured field. The presence of the flagella
induces a anterior-posterior asymmetry. (D) Radial decay of the flow field. At distances r < 6 µm the dipole model overestimates the bacterial flow field. (E) Experimentally
measured flow field for a bacterium near to the surface swimming at distance 2 µm parallel to the wall. (F) Best fit force-dipole model, and (G) residual flow field. Note the
existence of closed stream lines due to the presence of the wall. (H) The flow field of an E. coli “pusher” decays much faster, when a bacterium swims close to the surface,
since it is partially cancelled by the flow field of its “puller” image.
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the measured and best-fit force dipole field (Fig. 1C). The
decays of the flow speed u with distance r from the center
of the cell body (Fig. 1D) illustrate that the measured flow
field displays the characteristic 1/r2 decay of a force dipole.
However, the force dipole flow significantly overestimates the
measured flow to the side of the cell body, and behind the
cell body, where the flow magnitude u(r) is nearly constant
for the length of the flagellar bundle. The force dipole fit was
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at variable locations along the swimming direction to the far
field (r > 8 µm). From the best fit, which is insensitive to
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dipole length ℓ = 1.9 µm and dipole force F = 0.42 pN. This
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dipole flow describes the measured flow around a bacterium
with good accuracy far from walls, we investigated whether
this approximation is also valid for bacteria that swim close to
a wall. Focusing 2 µm below the top of the sample chamber,
and applying the same measurement technique than before,
resulted in a slightly different flow field (Fig. 1E). Although
the flow field structure is similar to the case of a bacterium far
from surfaces, the field decays much faster due to the proxim-
ity of a no-slip surface (Fig. 1H). In addition, the inward and
outward streamlines are now joined (Fig. 1E). However, both
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Evolution from unicellular organisms to larger multicellular ones
requires matching their needs to the rate of exchange of molecular
nutrients with the environment. This logistic problem poses a
severe constraint on development. For organisms whose body plan
is a spherical shell, such as the volvocine green algae, the current
(molecules per second) of needed nutrients grows quadratically
with radius, whereas the rate at which diffusion alone exchanges
molecules grows linearly, leading to a bottleneck radius beyond
which the diffusive current cannot meet metabolic demands. By
using Volvox carteri, we examine the role that advection of fluid
by the coordinated beating of surface-mounted flagella plays in
enhancing nutrient uptake and show that it generates a boundary
layer of concentration of the diffusing solute. That concentration
gradient produces an exchange rate that is quadratic in the radius,
as required, thus circumventing the bottleneck and facilitating
evolutionary transitions to multicellularity and germ–soma differ-
entiation in the volvocalean green algae.

advection " multicellularity " Volvox

The motility of microorganisms is primarily thought to enable
access to optimum environments. Yet some species of co-

lonial motile algae thrive in restrictive habitats such as shallow
evanescent puddles, all the while paddling energetically with
their f lagella. What is the significance, beyond locomotion, of
this collective coordinated beating of flagella? Algal metabolism
requires exchange, between organisms and water, of small
molecules and ions such as CO2, O2, and PO4

3!. Rapidly growing
organisms that are ‘‘large’’ in the sense explained below must
augment diffusion with effective modes of transport from re-
mote reaches of their environment (1). The volvocine green
algae (2–5) can serve as a model system for understanding how
exchange of nutrients and wastes varies with organism size, as in
the transition from unicellular to ever-larger multicellular col-
onies. The Volvocales range from the unicellular Chlamydomo-
nas to large colonies of cells, eventually leading to Volvox,
comprising 1,000–50,000 cells (Fig. 1). They include closely
related lineages with different degrees of cell specialization in
reproductive and vegetative function (germ–soma separation),
which seem to represent ‘‘alternative stable states’’ (6). Phylo-
genetic studies show that these transitions in cell specialization
have occurred multiple times, independently (7–9), to geomet-
rically and functionally similar configurations, suggesting that
there is a selective advantage to that morphology. The volvo-
calean range of sizes, "3 orders of magnitude, enables the study
of scaling laws; from a theoretical perspective, the spherical form
of the Volvocales simplifies mathematical analysis.

Volvox, the largest colonies in the lineage, are formed by sterile
bif lagellated Chlamydomonas-like somatic cells, with outwardly
oriented flagella, which are embedded at the surface of a
transparent extracellular matrix, which also contains the germ
cells that develop into flagellated daughter colonies. In some
species, germ cells start f lagellated, but after their first mitotic
division the flagella are absorbed (e.g., V. aureus), whereas in
others (e.g., V. carteri) the germ cells are never flagellated.

Directional swimming due to the coordinated beating of these
flagella also is accompanied by rotation; Volvox is from the Latin
‘‘volvere,’’ to roll (2). Bell (10) and Koufopanou (11) suggested
that the extracellular matrix is a storehouse (‘‘source’’) of
nutrients for the germ cells (‘‘sink’’). They interpret this source–
sink coupling as a mechanism that increases the uptake of
nutrients by the developing germ cells located within the colony.
Moreover, they showed (11) that germ cells from Volvox carteri,
when liberated from their mother colony and freely suspended
in the growth medium, grow more slowly than those embedded
in intact colonies. Those experimental studies did not consider
the external f low created by collective flagellar beating of the
mother colonies. Our studies (3, 4) were designed to investigate
the effects of such fluid flows and showed in fact that these flows
positively influence germ-cell growth rates. Indeed, externally
supplied flows can replace those due to flagella and return germ
cells to normal growth rates. Flagella obviously confer motility;
we infer that they also play a subtle but crucial role in metab-
olism. Niklas (1) suggested that as organisms increase in size,
stirring of boundary layers, yielding transport from remote
regions, can be fundamental in maintaining a sufficient rate of
metabolite turnover, one not attainable by diffusive transport
alone. Yet there has not been a clear quantitative analysis of this
putative connection between flagella-driven stirring and nutri-
ent uptake. Here we investigate the hypothesis that those flows
facilitate, even ‘‘encourage,’’ the transition to large multicellular
forms. We analyze the idealized problem of the scaling that
relates nutrient uptake to body size. Measurements of the actual
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Fig. 1. Volvocine green algae arranged according to typical colony radius R.
The lineage ranges from the single-cell Chlamydomonas reinhardtii (A), to
undifferentiated Gonium pectorale (B), Eudorina elegans (C), to the soma-
differentiated Pleodorina californica (D), to the germ–soma differentiated V.
carteri (E), V. aureus (F), and even larger (e.g., V. gigas with a radius of 1 mm).
In species in which two cell types can be identified, the smaller are somatic cells
and the larger are reproductive cells. Note that the number of cells in Volvox
species ranges from 1,000 (e.g., V. carteri) to 50,000 (e.g., V. barberi).
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Brownian motion of small objects in fluids 	
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Basic idea

Split dynamics into	



• deterministic part (drift)	



• random part (diffusion, “noise”)
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Chapter 1

Di↵usion and SDE models

Excellent reviews of the topics discussed in this chapter can be found in Refs. [CPB08,
HTB90, GHJM98, HM09].

1.1 Random walks

1.1.1 Unbiased random walk (RW)

Consider the one-dimensional unbiased RW (fixed initial position X0 = x0, N steps of
length `)

X
N

= x0 + `

NX

i=1

S
i

(1.1)

where S
i

2 {±1} are iid. random variables (RVs) with P[S
i

= ±1] = 1/2. Noting that 1

E[S
i

] = �1 · 1
2
+ 1 · 1

2
= 0, (1.2)

E[S
i

S
j

] = �
ij

E[S2
i

] = �
ij


(�1)2 · 1

2
+ (1)2 · 1

2

�
= �

ij

, (1.3)

we find for the first moment of the RW

E[X
N

] = x0 + `

NX

i=1

E[S
i

] = x0 (1.4)

1By definition, for some RV X with normalized non-negative probability density p(x) = d

dx

P[X  x],
we have E[F (X)] =

R
dx p(x)F (x). For discrete RVs, we can think of p(x) as being a sum of suitably

normalized �-distributions.
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and for the second moment

E[X2
N

] = E[(x0 + `
NX

i=1

S
i

)2]

= E[x2
0 + 2x0`

NX

i=1

S
i

+ `2
NX

i=1

NX
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S
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S
j

]

= x2
0 + 2x0 · 0 + `2
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E[S
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S
j

]

= x2
0 + 2x0 · 0 + `2

NX
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NX

j=1

�
ij

= x2
0 + `2N. (1.5)

The variance (second centered moment)

E
⇥
(X

N

� E[X
N

])2
⇤

= E[X2
N

� 2X
N

E[X
N

] + E[X
N

]2]

= E[X2
N

]� 2E[X
N

]E[X
N

] + E[X
N

]2]

= E[X2
N

]� E[X
N

]2 (1.6)

therefore grows linearly with the number of steps:

E
⇥
(X

N

� E[X
N

])2
⇤
= `2N. (1.7)

Continuum limit From now on, assume x0 = 0 and consider an even number of steps
N = t/⌧ , where ⌧ > 0 is the time required for a single step of the RW and t the total time.
The probability P (N,K) := P[X

N

/` = K] to be at an even position x/` = K � 0 after N
steps is given by the binomial coe�cient

P (N,K) =

✓
1

2

◆
N

✓
N

N�K

2

◆

=

✓
1

2

◆
N

N !

((N +K)/2)! ((N �K)/2)!
. (1.8)

The associated probability density function (PDF) can be found by defining

p(t, x) :=
P (N,K)

2`
=

P (t/⌧, x/`)

2`
(1.9)

and considering limit ⌧, ` ! 0 such that

D :=
`2

2⌧
= const, (1.10)
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Continuum limit

yielding the Gaussian

p(t, x) '
r

1

4⇡Dt
exp

✓
� x2

4Dt

◆
(1.11)

Eq. (1.11) is the fundamental solution to the di↵usion equation,

@
t

p
t

= D@
xx

p, (1.12)

where @
t

, @
x

, @
xx

, . . . denote partial derivatives. The mean square displacement of the con-
tinuous process described by Eq. (1.11) is

E[X(t)2] =

Z
dx x2 p(t, x) = 2Dt, (1.13)

in agreement with Eq. (1.7).

Remark One often classifies di↵usion processes by the (asymptotic) power-law growth
of the mean square displacement,

E[(X(t)�X(0))2] ⇠ tµ. (1.14)

• µ = 0 : Static process with no movement.

• 0 < µ < 1 : Sub-di↵usion, arises typically when waiting times between subsequent
jumps can be long and/or in the presence of a su�ciently large number of obstacles
(e.g. slow di↵usion of molecules in crowded cells).

• µ = 1 : Normal di↵usion, corresponds to the regime governed by the standard Central
Limit Theorem (CLT).

• 1 < µ < 2 : Super-di↵usion, occurs when step-lengths are drawn from distributions
with infinite variance (Lévy walks; considered as models of bird or insect movements).

• µ = 2 : Ballistic propagation (deterministic wave-like process).
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1.2 Brownian motion

1.2.1 SDEs and discretization rules

The continuous stochastic processX(t) described by Eq. (1.19a) or, equivalently, Eq. (1.20)
can also be represented by the stochastic di↵erential equation

dX(t) = u dt+
p
2DdB(t). (1.25)

Here, dX(t) = X(t + dt) � X(t) is increment of the stochastic particle trajectory X(t),
whilst dB(t) = B(t + dt) � B(t) denotes an increment of the standard Brownian motion
(or Wiener) process B(t), uniquely defined by the following properties3:

(i) B(0) = 0 with probability 1.

(ii) B(t) is stationary, i.e., for t > s � 0 the increment B(t) � B(s) has the same
distribution as B(t� s).

(iii) B(t) has independent increments. That is, for all t
n

> t
n�1 > . . . > t2 > t1,

the random variables B(t
n

) � B(t
n�1), . . . , B(t2) � B(t1), B(t1) are independently

distributed (i.e., their joint distribution factorizes).

(iv) B(t) has Gaussian distribution with variance t for all t 2 (0,1).

(v) B(t) is continuous with probability 1.

The probability distribution P governing the driving process B(t) is commonly known as
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