Problem Set: Euler's Elastica.

A

C

1. Pendulum

What is the energy E of a pendulum expressed in term of the angle θ and its time derivative (see Fig-A)? Using the software of your choice graph and classify the orbits of the pendulum in the phase plane $(\theta, \dot{\theta})$ when varying E. Compare those solutions with the harmonic oscillator. TIP: One may use the ContourPlot tool in Mathematica ${ }^{\text {TM }}$.

2. The shape of a 2 D -pendant drop

Derive the equation describing the shape of pendant drop surrounded by air using the set of coordinates defined in Fig-B. We recall that:

- when crossing a curved interface the pressure is subject to a discontinuity Δp which is proportional to surface tension γ and curvature $\kappa . \Delta p=\gamma \kappa$,
- in a liquid at rest the pressure gradient is $\nabla p=\rho \mathbf{g}$ where \mathbf{g} is the acceleration of gravity and ρ the fluid density.

TIP: Express $p(x)$ using two different methods and derive the result.

3. Linear response of the Euler elastica

Let us consider Euler's Elastica (see Fig-C.) and assume that P_{x} and P_{y} are small enough so that $\theta \ll 1$. Derive the linearized equation describing $\theta(s)$. Reconstruct and plot the Elastica shape. Plot the value of the moment $m(s)$. We recall the equations for the equilibrium of an elastic rod neglecting the action of gravity:

$$
\begin{array}{r}
\frac{d \mathbf{n}}{d s}=\mathbf{0} \\
\frac{d m}{d s}+\mathbf{t} \times \mathbf{n}=\mathbf{0} \\
\mathbf{m}(s) \cdot \mathbf{e}_{z}=m(s)=B \theta^{\prime} \tag{3}
\end{array}
$$

where $\mathbf{n}(s), \mathbf{m}(s), \theta^{\prime}$ and B are the rod internal stress, internal moment, curvature, and bending stiffness, respectively.

