PROBLEM SET: CONVERGENCE OF MAJORITY DYNAMICS

OMER TAMUZ

Abstract.

- (1) A dynamic monopoly is a set $D \subset V$ in a graph G = (V, E) with the following property: if $X_0^i = 1$ for all $i \in D$ and $X_0^j = 0$ for all $j \notin D$, then there exists a sequence of nodes $j_1, j_2, \ldots \notin D$ such that if node j_t updates in time t then then everyone eventually has opinion 1.
 - (a) Give an example of a graph with 2000 nodes, where each node has degree 1000, and where there exists a dynamic monopoly of size 501.
 - (b) Prove that in a graph with 200 nodes, where each node has degree 3, every dynamic monopoly has size at least 80.
 - (c) Prove that there are no finite dynamic monopolies in infinite graphs.
- (2) Convergence on \mathbb{Z}^d .
 - (a) Calculate an upper bound on the maximal number of opinion changes in Z^d, as a function of d.
 - (b) Show that on Z² the maximal number of opinion changes is exactly 2. This may require a direct combinatorial argument.
 - (c) (Open problem, perhaps not hard). Calculate the maximal number of opinion changes on Z³.
- (3) Prove the lemma from the lecture (namely that L_t is non-increasing).

Date: January 6, 2015.