- 1. Prove that \mathbb{Q}_p is not an ordered field; that is, prove that there is no partition of \mathbb{Q}_p into sets P, $\{0\}$, and $-P = \{-x : x \in P\}$ such that P is closed under addition and multiplication.
- Let x, y, z be three distinct elements of a field with a nonarchimedean absolute value || ||. Prove that at most two of the real numbers ||x − y||, ||y − z||, ||z − x|| are distinct. (in other words, every nonarchimedean "triangle" is isosceles).
- 3. Let k be field with a nonarchimedean absolute value $\| \|$. A ball in k is any set of the form

$$B(x,r) := \{y : ||x - y|| < r\}$$

Prove that for every $x \in k$ and $y \in B(x, r)$ we have B(y, r) = B(x, r). (in other words, every point in a ball is "at the center"). Conclude that if two balls intersect then one contains the other.

- 4. Let k be field with a nonarchimedean absolute value $\| \|$. Prove that a sequence (x_n) of elements of k is Cauchy if and only if $\lim_{n\to\infty} \|x_{n+1} - x_n\| = 0$. (this is not true in \mathbb{R} , but it is in \mathbb{Q}_p , which makes p-adic analysis a lot easier).
- 5. Prove that the *p*-adic representation of $x \in \mathbb{Q}_p$ is eventually periodic if and only if $x \in \mathbb{Q}$.
- 6. Let $| \mid_{\infty}$ denote the archimedean absolute value on \mathbb{Q} , and for each prime p let $| \mid_{p}$ denote the p-adic absolute value. Prove that the *product formula*

$$\prod_{p \le \infty} |x|_p = 1$$

holds for every nonzero $x \in \mathbb{Q}$, where the index p ranges over all primes and the symbol ∞ .