1. Prove that \mathbb{Q}_{p} is not an ordered field; that is, prove that there is no partition of \mathbb{Q}_{p} into sets P, $\{0\}$, and $-P=\{-x: x \in P\}$ such that P is closed under addition and multiplication.
2. Let x, y, z be three distinct elements of a field with a nonarchimedean absolute value $\|\|$.

Prove that at most two of the real numbers $\|x-y\|,\|y-z\|,\|z-x\|$ are distinct.
(in other words, every nonarchimedean "triangle" is isosceles).
3. Let k be field with a nonarchimedean absolute value $\|\|$. A ball in k is any set of the form

$$
B(x, r):=\{y:\|x-y\|<r\} .
$$

Prove that for every $x \in k$ and $y \in B(x, r)$ we have $B(y, r)=B(x, r)$.
(in other words, every point in a ball is "at the center").
Conclude that if two balls intersect then one contains the other.
4. Let k be field with a nonarchimedean absolute value $\|\|$.

Prove that a sequence $\left(x_{n}\right)$ of elements of k is Cauchy if and only if $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0$. (this is not true in \mathbb{R}, but it is in \mathbb{Q}_{p}, which makes p-adic analysis a lot easier).
5. Prove that the p-adic representation of $x \in \mathbb{Q}_{p}$ is eventually periodic if and only if $x \in \mathbb{Q}$.
6. Let $\left.\left|\left.\right|_{\infty}\right.$ denote the archimedean absolute value on \mathbb{Q}, and for each prime p let $|\right|_{p}$ denote the p-adic absolute value. Prove that the product formula

$$
\prod_{p \leq \infty}|x|_{p}=1
$$

holds for every nonzero $x \in \mathbb{Q}$, where the index p ranges over all primes and the symbol ∞.

