18.089 REVIEW OF MATHEMATICS

HOMEWORK 0

exercise 1. Compute the derivatives of the following functions:

• $y(x) = x^3$ (using the definition). • $y(x) = x^n$ (using the definition). • $y(x) = \frac{1}{\sqrt{x}}$. • $y(x) = \frac{1}{\sqrt{x^2 - 1}}$. • $y(x) = (x^3 + 1)(x^2 - 2x)$. • y(x) = f(x)g(x)h(x). • $y(x) = \frac{\sqrt{x}}{x^2 - 1}$. • $y(x) = (\frac{1}{x^2 + 1})^2$.

•
$$y(x) = (x^4 + 3x)^3$$
.

exercise 2. Study the following functions (i.e. graph them and determine the nature of the critical points):

•
$$y = 3x^2 + 1$$
. • $y = x^2 - 3x + 2$. • $y = x^3$. • $y = x^3 + 1$.

exercise 3. Compute the tangent lines of the above functions at the points (0,1), (1,0), (0,0) and (1,2) respectively.

exercise 4. Compute the tangent line of the function $y = \sqrt{x^3 + 3x}$ at the point (1,2).

exercise 5. Compute the tangent lines of the curve $x^2 + y^2 = 25$ at the points (3, 4) and (4, 3). Where do these lines intersect?

exercise 6. Minimize the perimeter of a rectangle with area = 20.

exercise 7. A ball travels on the parabola of equation $y - x^2 = 0$. At each time t, denote by x(t) and y(t) the projections of the ball on the x and y-axis respectively. If you know that the speed of x(t) is constant and equal to 3, what is the speed of y(t) when x(t) = 1 (and hence y(t) = 1)?

exercise 8. Use trigonometric formulas and implicit differentiation to show that $(\cos^{-1})' = \frac{-1}{\sqrt{1-x^2}}$.

exercise 9. Compute the following integrals: • $\int \frac{x^3}{x^4+5} dx$. • $\int \theta \sin(\theta^2) d\theta$. • $\int x \exp^{x^2} dx$. • $\int \frac{3x}{\sqrt{x^2+1}}$.

exercise 10. Compute the following integrals using substitutions:

• $\int e^x (e^x + 1)^b dx, \ u = e^x + 1.$ • $\int \frac{dx}{\sqrt{9 - 4x^2}} = \frac{1}{3} \int \frac{dx}{\sqrt{1 - (\frac{2x}{3})^2}}.$ • $\int \frac{2x + 1}{x^2 + x + 1} dx.$ • $\frac{1}{\sqrt{x^2 + 1}} \frac{\cos x}{\sqrt{1 + \sin x}} dx.$

exercise 11. Compute the following integral: $\int \frac{dx}{x^2+6x+25}$. **exercise 12.** Find the area between the curves $y = x^2 + 2$ and $y = 4 - x^2$.

exercise 13. Find the volume of the solid obtained by revolving around the x-axis the region bounded by $y = \sqrt{x}$, y = 0 and x = 4.

exercise 14. Calculate the following integrals:

•
$$\int \frac{x+2}{(x-3)^2(x+1)} dx$$
. • $\int \frac{x+2}{(x-6)(x+5)} dx$. • $\int \frac{x^3}{(x-2)(x+2)} dx$ (note that this is not a proper fraction).

exercise 15. Compute • $\int_{1}^{\sqrt{e}} x^3 \log 2x dx$. • $\int e^{3x} \cos 2x dx$. • $\int (x^2 + 1) \cos 3x dx$.

exercise 16. Compute the area inside the circle $x^2 + y^2 = 4$ and the parabola $y = x^2$.