
18.089 Exam 2
July 5, 2013

Name:

This exam consists of nine problems, not arranged in any particular order. Please solve
all problems in the space provided (or attaching additional sheets as necessary), showing all
work as neatly and cleanly as possible.

All work must be your own. In particular, you may not seek help from other students in
the class or any “live” internet resources. But feel free to use reference works such as your
class notes, a textbook, or Wikipedia. If you have any questions about what constitutes an
acceptable source, please ask.

Problem Value Score

Problem 1 15
Problem 2 20
Problem 3 30
Problem 4 15
Problem 5 30
Problem 6 20
Problem 7 20
Problem 8 25
Problem 9 25

Total 200
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Problem 1 (15 points). Compute the first five terms (i.e., up to and including the x4 term)
of the Taylor series for f(x) = e2x · cosx + sin(3x). (Hint: there are two natural ways to
proceed – either by taking derivatives or by using some Taylor series you already know.)

Solution:
Method 1: We mentioned in class that

ex = 1 + x+
x2

2
+
x3

6
+
x4

24
+ . . . ,

sinx = x− x3

6
+ . . . ,

and

cosx = 1− x2

2
+
x4

24
− . . . .

Thus

e2x = 1 + 2x+
(2x)2

2
+

(2x)3

6
+

(2x)4

24
+ . . .

= 1 + 2x+ 2x2 +
4x3

3
+

2x4

3
+ . . . ,

so

e2x cosx =

(
1 + 2x+ 2x2 +

4x3

3
+

2x4

3
+ . . .

)
·
(

1− x2

2
+
x4

24
− . . .

)
= 1 + 2x+

(
2− 1

2

)
x2 +

(
4

3
− 2 · 1

2

)
x3 +

(
2

3
− 2 · 1

2
+

1

24

)
x4 + . . .

= 1 + 2x+
3x2

2
+
x3

3
− 7x4

24
+ . . . .

Adding this to

sin(3x) = 3x− (3x)3

6
+ . . . = 3x− 9x3

2
+ . . .

yields

e2x cosx+ sin(3x) = 1 + 5x+
3x2

2
− 25x3

6
− 7x4

24
+ . . . .

Method 2: compute derivatives and apply the general formula. We have

f ′(x) = 2e2x cosx− e2x sinx+ 3 cos 3x,

f ′′(x) = 3e2x cosx− 4e2x sinx− 9 sin 3x,

f (3)(x) = 2e2x cosx− 11e2x sinx− 27 cos 3x,

and

f (4)(x) = −7e2x cosx− 24e2x sinx+ 81 sin 3x.

Thus f(0) = 1, f ′(0) = 5, f ′′(0) = 3, f (3)(0) = −25 and f (4)(0) = −7, which leads to the
same answer as the previous method.
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Problem 2 (10+10 point). (a) Determine the angles of the triangle with vertices P0 =
(1,−4, 1), P1 = (1, 1, 1) and P2 = (4, 1, 5).

Solution:
~P0P1 = (0, 5, 0), ~P0P2 = (3, 5, 4) and ~P1P2 = (3, 0, 4).

The angles are given by the formule cos θ = ~v·~w
|~v||~w| , where θ is the angle between ~v and ~w.

cos( ~P0P1
∧ ~P0P2) = 25

5·
√
50

= 1√
2
. Hence ~P0P1

∧ ~P0P2 = π
4
.

cos( ~P0P1
∧ ~P1P2) = 0. Hence ~P0P1

∧ ~P1P2 = π
2
.

cos( ~P0P2
∧ ~P1P2) = 9+16√

50·5 = 1√
2
. Hence ~P0P2

∧ ~P1P2 = π
4
.

(b) Determine the implicit equation of the plane containing the above triangle.

Solution:

We compute ~P0P1 × ~P1P2 = det

 î ĵ k̂
0 5 0
3 0 4

 = (20, 0,−15).

If we take P0 as the point on the plane, we get the equation 20x − 15z = 5, which reduces
to 4x− 3z = 1.
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Problem 3 (10+10+10 points). A particle travels in space so that its position at time t is
given by the parametric equation

R(t) = (t sin t, t cos t, t).

(a) Determine the velocity, the acceleration and the speed of the particle at the point
R(0).

Solution:
~v(t) = (sin t+ t cos t, cos t− t sin t, 1).
|~v(t)| =

√
2 + t2.

~a(t) = (2 cos t− t sin t,−2 sin t− t cos t, 0).
Hence ~v(0) = (0, 1, 1), |~v(0)| =

√
2 and ~a(0) = (2, 0, 0).

(b) Write down (but do not evaluate) the integral that gives the arclength of the portion
of the curve between the points R(0) and R(π/2).

solution:
length =

∫ π/2
0
|~v(t)|dt =

∫ π/2
0

√
2 + t2dt.

(c) Show that the curve lies on the surface x2 + y2 − z2 = 0 and compute the tangent
plane to this surface at R(π/2).

solution:
First, let’s check that the curve lies on the surface:

x(t)2 + y(t)2 + z(t)2 = t2 sin2(t) + t2 cos2(t)− t2 = t2 − t2 = 0

so all points on the curve satisfy the equation of the surface.

The point R(π/2) has coordinates (π/2, 0, π/2). Consider f(x, y, z) = x2 + y2 − z2. It
has gradient (2x, 2y,−2z). At R(π/2), this has value (π, 0,−π). It is a normal vector to the
tangent plane to the surface f(x, y, z) = 0 at R(π/2). Thus the tangent plane has equation:

π(x− π/2)− π(z − π/2) = 0⇔ x = z.

4



Problem 4 (10+5 points). Consider the curve given by the polar equation r = 1− 2 cos θ.
(a) Compute the area bounded by this curve (be careful with the limits of integration!).

Solution:
Remember that r must always be positive! From the condition 1 − 2 cos θ ≥ 0 we obtain
θ ∈ [π/3, 5π/3). The area is given by

1

2

∫ 5π/3

π/3

(1− 2 cos θ)2dθ =
1

2

∫ 5π/3

π/3

(1 + 4 cos2 θ − 4 cos θ) =

=
2π

3
− 2 [sin θ]

5π/3
π/3 +

1

2

∫ 5π/3

π/3

4 cos2 θdθ =
2π

3
+

∫ 5π/3

π/3

(1 + cos 2θ)dθ =

=
2π

3
+

4

3
π +

[
1

2
sin 2θ

]5π/3
π/3

= 2π +
3
√

3

2
.

(b) Write down (but do not evaluate) an integral whose value is the arclength of this
curve.

Solution:
Again, you have to be careful with limits of integration! The total length is:

length =

∫ 5π/3

π/3

√
r2 + (

dr

dθ
)2dθ =

∫ 5π/3

π/3

√
1 + 4 cos2 θ − 4 cos θ + 4 sin2 θdθ =

=

∫ 5π/3

π/3

√
5− 4 cos θdθ.

The arclength function is ∫ θ

π/3

√
5− 4 cos θdθ.

(Either answer was acceptable.)
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Problem 5 (10+10+10 points). Let z = f(x, y) = ex+y + exy+1.
(a) Find the equation of the tangent plane to the surface at the point (2, 1, 2e3).

Solution:
fx(x, y) = ex+y + yexy+1, fy(x, y) = ex+y + xexy+1. At the point (2, 1, 2e3) we have fx(2, 1) =
2e3, fy(2, 1) = 3e3. The tangent plane is thus given by

z = 2e3 + 2e3(x− 2) + 3e3(y − 1)

which can be a little simplified, for instance to

2e3x+ 3e3y − z = 5e3

(b) Find the implicit and explicit equation of the line perpendicular to the plane passing
through (2, 1, 2e3).

Solution:
From the equation of the plane we see that the vector (2e3, 3e3,−1) is tangent to the plane,
hence the equation of the line is 

x = 2e3t+ 2

y = 3e3t+ 1

z = −t+ 2e3.

If you solve for t you get the implicit equations{
y + 3e3z − 1− 6e6 = 0

x+ 2e3z − 2− 4e6 = 0.

(Note that you need a pair of implicit equations, but that it is not unique.)

(c) Compute the directional derivative at the point (1,−1) in the direction ~v = (3,−3).

Solution:
∇(f)(1,−1) = (fx(1,−1), fy(1,−1)) = (0, 2), ~v is not a unit vector, hence we have to rescale
it and

Ddir~vf(1,−1) =
1√
18
∇(f)(1,−1) · ~v =

−6

3
√

2
= −
√

2.
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Problem 6 (10+10 points). The plane given by x+y+2z = 2 and the paraboloid z = x2+y2

intersect in an ellipse.
(a) Find the points on this ellipse that are nearest to and farthest from the origin.

Solution:
This is a tricky question: it asks us to do a Lagrange-type maximization problem, but

where we have two constraints instead of one! There are two routes you can take here: either
reduce it to a one-constraint problem, or use the multiple constraint Lagrange method you
might have picked up somewhere else (e.g. Wiki).

Let’s do the first way: our strategy is going to be to eliminate z as much as possible,
and treat this as a maximization problem in x and y. The intersection of the two is where
x + y + 2z = 2 and z = x2 + y2, which means that x + y + 2x2 + 2y2 − 2 = 0. Now, the
function we want to maximize is

√
x2 + y2 + z2. As you have probably realized by now,

it’s always going to be easier to maximize/minimize the square of the distance function (i.e.
x2 + y2 + z2), rather than the distance itself. In the intersection, we have

f(x, y) = x2 + y2 + z2 = x2 + y2 +

(
2− x− y

2

)2

.

We want to max/min this f(x, y), subject to the constraints g(x, y) = x2+y2+2x2+2y2−2 =
0. Set up Lagrange: ∇f = λ∇g, and so(

2x− 2− x− y
2

, 2y − 2− x− y
2

)
= λ (4x+ 1, 4y + 1) , 2x2 + 2y2 + x+ y − 2 = 0.

As usual, we have three equations in three variables. If you go through the painful process of
solving them, you get: x = −1, y = −1, λ = 4/3 or x = 1/2, y = 1/2, λ = 1/6. These must
be the max and min of the distance function, and so the points we’re after are (−1,−1, 2)
and (1/2, 1/2, 1/2). The former maximizes distance

√
6, and the latter minimizes it

√
3/2.

There were a lot of slightly wrong ways to set up this problem, e.g. by only really using
one constraint, or by maximizing x2 + y2 + z2 instead of x2 + y2. Unfortunately, a lot of
these not-so-right methods would give the correct answer in the end. So don’t be too taken
aback if you got the right max but still lost some points.

(b) Compute the tangent lines to the ellipse at those points.

Solution:
The easiest way to get the tangent line is this case is to realize that it’s the intersection

of the tangent planes of the two surfaces at the points in question. The tangent plane to a
plane at a point is easy: it’s just the plane itself x + y + 2z = 2. For the tangent plane to
the paraboloid, use the fact that it’s orthogonal to the gradient of z − x2 − y2 = 0, which is
(−2x,−2y, 1). At (−1,−1, 2), this is (2, 2, 1), and the plane is 2(x+1)+2(y+1)+(z−2) = 0,
or 2x + 2y + z = −2. At (1/2, 1/2, 1/2), the gradient is (−1,−1, 1), and the plane is
−(x− 1/2)− (y − 1/2) + (z − 1/2) = 0, so z − x− y = −1/2.

7



This gives the implicit equation for the plane. At (−1,−1, 2), it’s defined by x+y+2z = 2
and 2x + 2y + z = −2. To get the explicit equation, take the cross product of the normal
vectors: (1, 1, 2) × (2, 2, 1) = (−3, 3, 0). This means the line is ~r(t) = (−1 − 3t,−1 + 3t, 2).
Similarly, at (1/2, 1/2, 1/2) the equations are x + y + 2z = 2 and z − x − y = −1/2, and
cross product gives ~r(t) = (1/2 + 3t, 1/2− 3t, 1/2).

A quicker way to find the tangent line is this. Think about the ellipse in the plane 2x2 +
x+ 2y2 + y = 2 (this is the ellipse you get if you forget the z-coordinate). This is symmetric
about the line x = y, and so the tangent directions at the two extreme points must both be
(1,−1). The tangent line to the ellipse at e.g. (−1,−1, 2) must be (−1+t,−1−t, something).
But since distance is maximized, the tangent line has to be normal to the radial ector from
(−1,−1, 2). This means z is a constant 2.
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Problem 7 (10+10 points). (a) Find the critical point of the function f(x, y) = x2 + xy +
y2 − 4x− 5y + 5 and classify it.

Solution: From the system

{
fx(x, y) = 2x+ y − 4 = 0

fy(x, y) = 2y + x− 5 = 0
we find that the critical point is

(1, 2) is a critical point. For the Hessian we have: fxx = 2, fxy = 1 and fyy = 2, hence

H(x, y) =

(
2 1
1 2

)
. The determinant of this matrix is 3, and fxx is grater than zero, hence

the point (1, 2) is a minimum.

(b) For x = t−s, y = t+s, compute ∂f
∂t

and ∂f
∂s

and check that ∂f
∂s

+ ∂f
∂t

= 2∂f
∂y

(t−s, t+s).

Solution: If we substitute x(t, s) and y(t, s) in f(x, y) we obtain

f(x(t, s), y(t, s)) = 3t2 + s2 − 9t− s+ 5.

Hence ∂f
∂t

= 6t − 9 and ∂f
∂s

= 2s − 1. Moreover ∂f
∂y

(t, s, t + s) = 3t + s − 5 and the claim
follows.
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Problem 8 (10+5+5+5 points). This problem deals with the double integral∫ 2

y=0

∫ 2

x=y

xy dx dy.

(a) Draw the region R over which the integral is being taken, and evaluate the double
integral directly.

First we need to draw the region. It’s illustrated below.

nn For the computation, we have∫ 2

y=0

∫ 2

x=y

xy dx dy =

∫ 2

y=0

(
x2y

2

∣∣∣∣2
x=y

)
dy =

∫ 2

y=0

(
2y − y3

2

)
dy

=

(
y2 − y4

8

∣∣∣∣2
y=0

)
= 4− 2 = 2.

(b) Evaluate the integral by changing the order of integration, so that the inside integral
is taken with respect to y.

Writing the bounds for the new order of integration,

I =

∫ 2

x=0

∫ x

y=0

xy dy dx =

∫ 2

x=0

(
xy2

2

∣∣∣∣x
y=0

)
dx

=

∫ 2

x=0

x3

2
=
x4

8

∣∣∣∣2
x=0

= 2.

(c) Evaluate the integral by switching to polar coordinates.

Clearly we want θ to be the outside integral and range from 0 to π/4. For a given θ, we
need r to go from 0 to 2 sec θ. The function is now

xy = r2 cos θ sin θ.

Plugging all that in and remembering that dx dy = r dr dθ,

I =

∫ π/4

θ=0

∫ 2 sec θ

r=0

r2 cos θ sin θ r dr dθ =

∫ π/4

θ=0

∫ 2 sec θ

r=0

r3 cos θ sin θ dr dθ

=

∫ π/4

θ=0

(2 sec θ)4

4
sin θ cos θ dθ = 2

∫ π/4

θ=0

sin θ cos θ

cos4 θ
dθ

= 4

∫ π/4

θ=0

tan θ sec2 θdθ = 2

(
sec2 θ

2

∣∣∣∣π/4
0

)
= 4(1− 1/2) = 2.
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(d) Evaluate the integral using the change of coordinates u = y/x, v = x.

The three curves bounding our region are u = 0, u = 1, v = 2, and we see that the lower
bound on v is 0. The function xy is uv2.

Notice that y = uv, so the Jacobian is

∂(x, y)

∂(u, v)
= det

(
xu xv
yu yv

)
= det

(
0 1
v u

)
= −v.

The absolute value is v. So dx dy = v du dv.
So

I =

∫ 2

v=0

∫ 1

u=0

uv2 v du dv =

∫ 2

v=0

(
u2v3

2

∣∣∣∣1
u=0

)
dv =

∫ 2

v=0

v3

2
dv =

v4

8

∣∣∣∣2
v=0

= 2.
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Problem 9 (5+5+10+5 points). Give bounds on integration for the following two- and
three-dimensional regions, in the coordinate systems indicated.

(a) (Rectangular) The parallelogram with vertices at (0, 0), (1, 0), (1, 1), (2, 1).

∫ 1

y=0

∫ y+1

x=y

f(x, y) dx dy

or ∫ 1

x=0

∫ x

y=0

f(x, y) dy dx+

∫ 2

x=1

∫ 1

y=x−1
f(x, y) dy dx.

(b) (Polar) A circle centered at the point (1, 0), with radius 1.

∫ π/2

θ=−π/2

∫ 2 cos θ

r=0

f(r, θ) r dr dθ

(Rectangular) The region bounded by the five planes y = 0, y = 1, z = 0, x = 1, and x = z.

∫ 1

x=0

∫ 1

y=0

∫ x

z=0

f(x, y, z) dz dy dx.

(c) (Cylindrical, spherical) A cone with vertex at (0, 0, 0) whose base is a circle of radius
2 centered at (0, 0, 2) (parallel to the xy-plane).

Cylindrical: ∫ 2π

θ=0

∫ 2

r=0

∫ 2

h=r

f(r, θ, h) r dh dr dθ

Spherical: ∫ 2π

θ=0

∫ π/4

φ=0

∫ 2 secφ

ρ=0

(d) Set up integrals to compute the z-coordinate of the center of mass of the cone from
(c), assuming a uniform density δ(x, y, z) = 1. You don’t have to actually compute it.

mass =

∫ 2π

θ=0

∫ 2

r=0

∫ 2

h=r

1 r dh dr dθ

zcm =
1

mass

∫ 2π

θ=0

∫ 2

r=0

∫ 2

h=r

h r dh dr dθ
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