
A Study on Numerical Solution to the

Incompressible Navier-Stokes Equation

Zipeng Zhao

May 2014

1 Introduction

1.1 Motivation

One of the most important applications of finite differences lies in the field of
computational fluid dynamics (CFD). In particular, the solution to the Navier-
Stokes equation grants us insight into the behavior of many physical systems.
The 2D Incompressible Navier-Stokes equation has been studied extensively due
to its analogous nature to many practical applications, and several numerical
schemes have been developed to provide solutions dedicated to different envi-
ronmental conditions (such as different Reynolds numbers). For instance, the
ongoing work of MITs Aerospace Computational Design Laboratory leverages
multidisciplinary aircraft models generated through numerical PDE solvers, a
few of which may deal directly with the Navier-Stokes equation. Consequently,
the primary intent of this project is to study an approach by Benjamin Sei-
bold in demonstrating a numerical solver for the Navier-Stokes equation. The
project focuses on many nuisances that this particular implementation brings,
such as the complexity behind the very staggered grid and the manifestation of
the non-linear parts of the equation onto the grid. We also cover the assign-
ment of boundary conditions, starting with the simple case of a lid driven cavity
problem. In addition, several parts of the equation are given implicitly, which
requires efficient ways of solving large systems of equations.

1.2 Problem Definition

To start, we consider the 2D Incompressible Navier-Stokes equation:

ut + px = −(u2)x − (uv)y +
1

Re
(uxx + uyy) (1)

vt + py = −(uv)x − (v2)y +
1

Re
(uxx + uyy) (2)

ux + vy = 0 (3)

1

on a rectangular domain Ω = [0, lx] × [0, ly]. (u, v) represents the velocity
field, p represents the pressure, and Re represents the Reynolds number. A
shortened derivation of this equation will be provided in Section 2. The four
domain boundaries are denoted North, South, West, and East. The domain
stays fixed in time, and we consider no-slip boundary conditions on each wall,
namely:

u(x, ly) = uN (x) v(x, ly) = 0 (4)

u(x, 0) = uS(x) v(x, 0) = 0 (5)

u(0, y) = 0 v(0, y) = vW (y) (6)

u(lx, y) = 0 v(lx, y) = vE(y) (7)

Our objective is to find an efficient way to discretize the PDEs and solve the
system numerically using finite difference approximations.

2 Analysis

2.1 Shortened Derivation of Navier-Stokes Equation

The Navier-Stokes equation is a special case of the continuity equation, express-
ible through the Reynolds transport theorem:

d

dt

∫
Ω

LdV = −
∫
∂Ω

Lv · ndA−
∫

Ω

QdV (8)

where L represents some intensive property of the conservative substance, Ω
represents the control volume, v the velocity of the substance, Q the sources
and sinks in the control volume, dV the element volume, dA the element area,
and n the normal vector to the element area. In essence, the theorem states
that the sum of the changes of some intensive property defined over a control
volume must be equal to the net gain through the boundaries of the volume plus
what is created by the sources and what is consumed by the sinks inside that
volume. In the equation above, −

∫
∂Ω
Lv · ndA represents the net gain through

the boundaries of Ω while −
∫

Ω
QdV represents changes through sinks.

Applying the divergence theorem to −
∫
∂Ω
Lv · ndA, equation (8) changes to:

d

dt

∫
Ω

LdV = −
∫

Ω

∇ · (Lv)dV −
∫

Ω

QdV (9)

Assuming L and ∂L
∂t are continuous, we apply Leibniz’s integral rule and obtain:∫

Ω

∂L

∂t
dV = −

∫
Ω

∇ · (Lv)dV −
∫

Ω

QdV

⇒
∫

Ω

∂L

∂t
+∇ · (Lv) +QdV = 0 (10)

2

Since this must be true for any control volume, the integrand itself must equal
0:

⇒ ∂L

∂t
+∇ · (Lv) +Q = 0 (11)

To produce the Navier-Stokes equation, we begin by making the following
assumptions:

• The fluid of interest behaves as a continuum.

• All relevant variables involved are differentiable

– i.e. Fields such as pressure, velocity, density, temperature, etc.

Furthermore, we adopt a Lagrangian view of the fluid. That is, when mea-
suring a given property, we follow a parcel of fluid along its streamline. The
corresponding derivative is hence:

D

Dt
=

∂

∂t
+ v · ∇ (12)

where v represents the velocity of the fluid.

Consider a finite control volume Ω and its bounding surface ∂Ω. We let L from
the Reynolds transport theorem equal ρv, where ρ represents the density of the
fluid:

∂(ρv)

∂t
+∇ · (ρvv) +Q = 0 (13)

where Q represents sources and sinks of the fluid in Ω.

Expanding above, we obtain:

v
∂ρ

∂t
+ ρ

∂v

∂t
+ vv · ∇ρ+ ρv · ∇v + ρv∇ · v = b (14)

⇒v(
∂ρ

∂t
+ v · ∇ρ+ ρ∇ · v) + ρ(

∂v

∂t
+ v · ∇v) = b (15)

⇒v(
∂ρ

∂t
+∇ · (ρv)) + ρ(

∂v

∂t
+ v · ∇v) = b (16)

Applying Reynolds transport theorem separately to ρ, we obtain the conserva-
tion of mass:

Dρ

Dt
=
∂ρ

∂t
+∇ · (ρv) = 0 (17)

in the absence of sources or sinks of mass. Notice that if ρ is constant, the
above reduces to ∇ · v = 0. We will refer to this simple equation as the mass
conservation constraint for incompressible fluids. Plugging (17) into (16), we
get:

ρ(
∂v

∂t
+ v · ∇v) = b (18)

which is very much analogous to ma = F.

3

Now consider the generic body force b from before:

b = ∇ · σ + f (19)

where σ is the Cauchy stress tensor and f is the net of all other body forces such
as gravity. Specifically (in 3D):

σij =

 σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

 (20)

= −

 π 0 0
0 π 0
0 0 π

 +

 σxx + π τxy τxz
τyx σyy + π τyz
τzx τzy σzz + π

 (21)

= −πI + T (22)

where π = − 1
3 (σxx + σyy + σzz) (mean normal stress) and tr(T) = 0.

The Navier-Stokes equation assumes incompressible isotropic Newtonian fluids,
that is:

τ = µ
∂u

∂y
(23)

where τ represents the shear stress, µ represents the shear viscosity of the fluid,
and y represents the displacement in the direction perpendicular to the velocity
u. Equivalently:

τij = µ(
∂ui
∂xj

+
∂uj
∂xi

) (24)

Provided that ∇ ·v = 0, we can easily show by plugging (24) into (22), and the
result into (19) that:

b = −∇π + µ∇2v (25)

notice that π represents the mechanical pressure. Plugging (25) into (18), we
obtain the Navier-Stokes equation for incompressible isotropic fluids:

ρ(
∂v

∂t
+ v · ∇v) = −∇π + µ∇2v (26)

In the notation of Seibold’s documentation [1], this can be expanded and rewrit-
ten as:

ut + px = −(u2)x − (uv)y +
1

Re
(uxx + uyy) (27)

vt + py = −(uv)x − (v2)y +
1

Re
(uxx + uyy) (28)

ux + vy = 0 (29)

with (29) being the mass conservation constraint for incompressible fluids.

4

2.2 Finite Difference Approach

The solution of the Navier-Stokes equation in time is given by u, v, p, and q,
where the new variable q is the stream function (a function whose orthogonal
gradient is the velocity field). The approach that Seibold takes to propagate
the solution can be intuitively understood as a sequence of three different refine-
ments per time step to include additional terms and correct the velocity fields.
Certain refinements are given implicitly, which we will later show to be solved
exactly by Cholesky decomposition and Gaussian elimination for efficiency.

Let Un and V n be the velocity field at the nth time step (time t), and the
mass conservation constraint for incompressible fluids is satisfied. We find the
solution at the (n+ 1)st step (time t+4t) by:

1. Adding nonlinear terms explicitly to find an intermediate solution:
(A time-step-limiting CFL condition is introduced here)

U∗ − Un

4t
= −((Un)2)x − (UnV n)y (30)

V ∗ − V n

4t
= −(UnV n)x − ((V n)2)y (31)

2. Adding viscosity terms (µ∇2v) implicitly to find another intermediate
solution:

U∗∗ − U∗

4t
=

1

Re
(U∗∗

xx + U∗∗
yy) (32)

V ∗∗ − V ∗

4t
=

1

Re
(U∗∗

xx + U∗∗
yy) (33)

3. Apply Chorin’s projection method to obtain pn+1. Then update the in-
termediate solution with pn+1 to leave a divergence-free Un+1:
For any vector field Φ**, we can apply the Helmholtz decomposition to
obtain:

Φ** = Φsol + Φirrot (34)

where Φsol is divergence-free and Φirrot is irrotational (∇×Φirrot = 0).
In our case, we know that Un+1 is divergence-free (mass conservation con-
straint for incompressible fluids) and pressure is irrotational, so starting
from:

Un+1 −U**

4t
= −1

ρ
∇pn+1 (35)

we have:
U** = Un+1 + Uirrot (36)

where

Uirrot =
4t
ρ
∇pn+1 (37)

5

Taking the divergence of both sides of (36), we obtain:

∇2pn+1 =
ρ

4t
∇ ·U** (38)

Solve for pn+1, then find ∇pn+1. Use the result to update the velocity
field:

Un+1 = U** − 4t
ρ
∇pn+1 (39)

Notice that both 2 and 3 require taking the inverse of large matrices, which
can be done efficiently using Cholesky decomposition and Gaussian elimination.
In addition, for visualization, we compute Fn = (V n)x − (Un)y and solve the
Poisson equation −4Qn = −Fn.

2.3 Spatial Discretization

Much of this implementation’s nuisances lie in the discretization. In particular,
we cannot discretize each variable at the same position on the grid. Doing so will
prevent us from conducting the three aforementioned refinements in sequence
and result in heavy loss of resolution and potential numerical instabilities. Thus,
we adopt a very staggered grid approach. The figure below shows the grid with
boundary cells:

Figure 1: Very staggered grid with boundary cells[2]

At the first refinement step, we find (U∗, V ∗) using (Un, V n). We cannot
multiply U and V directly if they live in different positions. We must first

6

interpolate to get the terms to be at the same position. To do so, we use:

Ui+ 1
2 ,j

=
Ui+1,j + Ui,j

2
(40)

Ui,j+ 1
2

=
Ui,j+1 + Ui,j

2
(41)

Vi+ 1
2 ,j

=
Vi+1,j + Vi,j

2
(42)

for updating U∗ and analogously for V ∗. This is a central differencing approach.
Seibold also covers an upwinding approach in his documentation, which we will
not cover here. Note that by taking the derivative −((Un)2)x, we are finding
a value at Ui,j ’s position by differencing a value 1

2hx to the right with a value
1
2hx to the left. By taking the derivative −(UnV n)y, we are finding a value at
Ui,j ’s position by differencing a value 1

2hy to the top with a value 1
2hy to the

bottom (assuming yi,j+1 > yi,j). This symmetry produces a value that shares
the same position as the original Ui,j . Once again, this is analogous for V ∗.

In the second refinement step, we find U∗∗ using Uxx + Uyy. We need U∗∗
i,j to

be at the same place as Ui,j . The second difference for Ui,j is symmetric in
the interior points in both dimensions. That is, for Uxx, it uses a point hx to
the right, a point on top of itself, and a point hx to the left; for Uyy, it uses
a point hy to the top, a point on top of itself, and a point hy to the bottom.
As a result, the second difference operator leaves a value that shares the same
position as the original Ui,j , thereby satisfying the discretization requirement.
This is analogously extended to V ∗∗.

In the third refinement step, we find pn+1 using ∇·U**. Hence, we need the first
derivative of U** at the position where pn+1 is. Thus, we adopt the following
approximation:

(Ux)i+ 1
2 ,j
≈ Ui+1,j − Ui,j

hx
(43)

(Uy)i,j+ 1
2
≈ Ui,j+1 − Ui,j

hy
(44)

which puts the pair (Ux, Uy) at the position of pi,j .

2.4 Boundary Conditions

The assignment of boundary conditions follows naturally from the discretization.
At the points that lie on the boundary, the value is directly prescribed, such as
U at the west and east boundary, and V at the north and south boundary. At
points where a boundary exists in between, an averaging operation is conducted
between the points inside the grid and the points outside; the result is prescribed
as the fixed boundary value. For pressure, which adopts Neumann boundary
conditions, we take a forward difference leaping across the boundary (since the

7

boundary is always normal to pressure in our lid-driven cavity problem) and
assign the result to zero (free boundary for pressure). Since we have direct
access to the solution at each time step, we do not need to change the operator
matrices (i.e. the matrices that perform the three refinements) substantially.

2.5 Solving Linear Systems

The method we used have implicit steps. This requires us to take the inverse
of potentially very large matrices. Seibold’s implementation adopts Cholesky
decomposition, which takes advantage of the fact that all of our operator matri-
ces are positive definite or can be made positive definite without affecting the
solution and factors the operator matrix into a lower triangular part multiplied
by an upper triangular part. An introduction to the concept for Cholesky de-
composition can be found in Strang’s textbook[3]. Since finding the inverse of
a triangular matrix is much easier than finding the inverse of some arbitrary
square matrix, we save a significant amount of computation. Prior to the de-
composition, Seibold also reorders the operator matrix in order to minimize the
amount of fill-ins due to elimination steps (MATLAB’s backslash command uses
Gaussian elimination). As such, the new permutation must be applied to all
relevant matrices and solution vectors.

8

2.6 Demonstration

Figure 2: A demonstration run of the code

The above plot shows a run of the code in its default form from t = 0 to
t = 4. Since our objective is not to study any particular physical application,
we did not run the code extensively for simulation purposes. However, Kong
demonstrates a very interesting use of the code in his project in 2008[2], which
involves changing the boundary conditions to match that of a electro-chemical
device.

References

[1] Benjamin Seibold, A compact and fast Matlab code solving the incompressible
Navier-Stokes equations on rectangular domains.
http://www-math.mit.edu/seibold (1994).

[2] Tian Fook Kong, Finite Difference Modeling of Micro Optofluidic Switch by
solving 2-D Navier-Stokes Equations.
http://math.mit.edu/classes/18.086/2008/ (2008).

[3] Gilbert Strang, Computational Science and Engineering, First Edition.
Wellesley-Cambridge Press, 2008.

9

