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Abstract: A second order accurate finite volume method for solving nonlinear
advection-diffusion problems is explained, validated against a linear test
problem with an analytical solution, and implemented in several non-linear
case studies. Both 1 and 2 dimensional problems are studied to demonstrate
the ease with which the method is extended to higher dimensions.

I. Introduction

When medication is injected into a patient’s vein, the medication is carried or
advected in the direction of the blood flowing through the vein. Additionally, the
medication, which is initially concentrated, spreads out over time due to diffusion.
Assuming advection and diffusion are the only two processes occurring, the
medication’s concentration profile, c(x, t), evolves in time according to the following
PDE:

d:c = div {h(c)VV (x) + Vr(c)} (D
where the first and second terms in the curly brackets describe transport due to
advection and diffusion, respectively.

In many transport problems, (1) is linearized by setting h(c) and r(c) equal to c.
When this is done, we can use standard explicit finite difference techniques to
evolve a starting concentration profile in time. However, transport problems in
which h(c) and r(c) are more complex functions of c also arise. In such problems,
(1) becomes nonlinear and explicit finite difference techniques do not suffice
because it is no longer possible to take derivatives of the discontinuities that emerge
during the evolution of such problems.

In this paper, a second order accurate, finite volume scheme for solving nonlinear
advection-diffusion problems [1] is implemented, validated, and applied in some 1-
and 2-D nonlinear, advection-diffusion case studies. We selected a finite volume
method because such methods are easy to implement, straightforward to extend to
higher dimensions on a Cartesian grid, and converge to a physically correct weak
solution when applied to nonlinear problems, provided certain conditions are met.

The structure of this paper is as follows. We begin in section 2 by explaining the
mathematical underpinnings of finite volume methods and then explain the
technique utilized in this manuscript. This includes an explanation of how using a
linear interpolation scheme with a slope limiter can lead to second order accuracy in
space while giving solutions free of unphysical oscillations. In section 3, the method
and expected order of accuracy are validated using a simple linear test case. Finally,
in section 4, the method is applied to a non-linear diffusion problem: fluid flow in a



porous medium where the function r(c) is of the form ¢™ with m equal to some
integer greater than 1.

II. Finite Volume Methods

1. Background

Eqn. 1 is a microscopic mass-balance law: the change in concentration in a
differential volume element is equal to the divergence of the flux across that volume
element. As alluded to above, issues arise when this differential picture is applied to
nonlinear problems. This is because in non-linear problems, characteristics tracking
the evolution of the initial conditions can intersect to form discontinuities and the
derivatives in (1) are not defined at these discontinuities. Therefore, a better way to
handle such non-linear problems is to avoid taking derivatives by reformulating the
PDE as an integral. Considering a discrete interval in space-time, the integral form
of (1) can be written in 1-dimension as

[ e(xt)dx = [ c(x,t)dx + ([, f (2, 0)de — [ f (x,, t)dt) )
where
f(x,¢) = h(c)VV(x) + Vr(c). (3)

In words, (2) says that the change in the mean value of the concentration across the
interval (x, — x;) in space is equal to the total flux across the boundaries to that
interval between times t; and t,. A discrete formulation of (2) that forms the basis
of most finite volume numerical methods is

At = -
Cjn+1 = Cjn T Ax (F}'+1/2 - F}'—l/z) (4)

where ¢/ is the mean concentration of cell j at time step n and 17"j+1 /21s the total flux

across the boundary between the cells atj + i during 1 time step. In (4) we are
stepping forward in time using Forward Euler.

Eqgns. (2) and (4) are called the continuous and discrete conservation forms of the
original PDE because they guarantee that total concentration is conserved. That this
is so for Eqn. 4 can be seen by first discretizing the entire domain into a series of
adjacent cells and then summing each of their respective Eqn. 4’s. When this is

done, the flux terms of neighboring cells cancel out and we obtain
n+1 n At | ~ ~
ﬁ:A ¢ = 5=A Ci _E(FB+1/2 - FA—1/2) (6)

where all that remains are fluxes at the domain boundaries A and B. Thus, net
changes in total concentration are only due to mass entering or exiting at these
boundaries. In addition to avoiding derivatives of discontinuous functions, there is
a second benefit to rewriting (1) in a conservation form and using it to solve
nonlinear PDEs numerically: according to the Lax-Wendroff theorem, if a
conservative and consistent finite volume method converges, then it will converge
to a weak solution and shocks or discontinuities will be in a correct position (though
not necessarily the physically correct position) [2].



Whether a consistent and conservative finite volume method converges is another
issue that is dictated by how the numerical approximation’s total variation evolves
over time. The total variation (TV) is a measure of how much the approximation
oscillates and is defined as

TV = Z?:A ¢ — ¢l (7)
A consistent and conservative method will converge provided the method is TV
stable, meaning that TV (nAt) is bounded (the Lax-Friederichs method that we
implement ensures this by actually being TV-diminishing).

Finally, to guarantee that the method converges to the physically relevant weak
solution, the method must also meet some form of an entropy condition, which is
the CSE equivalent to the 27 Jlaw thermodynamics: global entropy can only increase.
To a computational scientist, this translates into the idea that information about the
initial data can only disappear (i.e., shocks can only absorb characteristics, not emit
them). In practice, the methods accomplish this by incorporating some numerical
dissipation, which serves to “diffuse” away some of the initial information at shocks
or rarefactions. In summary, a consistent and conservative finite volume scheme
will converge to the physically relevant weak solution provided it is TV-stable and
satisfies an entropy condition. The challenge in coming up with accurate finite
volume schemes lies in developing methods for estimating the flux with just enough
numerical dissipation.

We now turn to the practical matter of relating (1) to (4). Because (1) is an
advection-diffusion equation, it is a parabolic PDE. However, finite volume
numerical methods were originally developed for solving nonlinear hyperbolic
equations. This motivates recasting (1) in the form of the standard 1-dimensional
hyperbolic equation by writing the terms in the curly brackets as

h(€)0,V (x) + 0,7(c) = ()0, (V(x) + s(c)) = h(c)d,(A(x, ¢)) (8)
where
s(c) = flcrh((cc)) dc*. (9)

We treat the function A as a velocity and approximate it at each boundary using
centered differences:

_ V(xip1)=V(x) | s(cig1)—s(cy)
- D o) an

2. First Order Methods

Given (4), the main challenge in developing a finite volume scheme is finding an
accurate approximation to the flux, F. Most of the first order accurate methods for
estimating the flux involve the same procedure: first discretize the solution at time
step n into a series of neighboring cells with piecewise constant concentrations
equal to the mean concentration of that cell, and then estimate the flux using some
combination of the mean concentration in neighboring cells. For example, the local
Lax-Friederichs (LLxF) method is a centered scheme that estimates the flux as
follows:



Fio1j2 = % [f(cj 1) +£(e)) = @j_1y2(¢; = ¢-1)] (12)
where

Aj-1/2 = maX(|f’(Cj—1)|' 11" (c)D- (13)

Approximating a to be a constant and inserting (12) into (4) gives

U = U = 5 (F(Gen) = f(621) = (G = 26+ G-1) (14)

Inspection of (14) reveals a discretized second derivative term with a prefactor «
that results from the second term in (12). This second derivative contributes some
numerical dissipation to the method and the prefactor a controls the magnitude of
the dissipation. Though this numerical dissipation is what enables the LLxF method
to satisfy the entropy condition, it is problematic in that it does not disappear when
it is unnecessary, i.e., when the solution is smooth. As a result, shocks and even
smooth regions in solutions calculated using first order methods tend to become
rounded off as the system evolves. This tendency to smoothen out is illustrated in
Figures 1a-d, which compare solutions to a linear advection problem with a
constant speed of 1, periodic boundary conditions, and an initial condition
consisting of a smooth Gaussian and a box function calculated using the first order
accurate Lax-Friederichs and upwind schemes. As is apparent from the figure, both
schemes’ numerical dissipations cause the initial features in the simulation to
become rounded over time.

For the linear advection problem just discussed, a logical next choice for trying to
improve the accuracy would be to calculate the flux using a method that is second
order accurate in space such as the Lax-Wendroff method:

Frovya =3A(G + ¢oy) =55 A2(G — Gos). (15)
where A is a speed that is set equal to 1 for this test problem. In essence, the Lax-
Wendroff scheme is a piecewise linear interpolative scheme that uses the upwind
slope to calculate the slope of the approximate function for c in each cell.
Encouragingly, Figures 1e and f demonstrate how the Lax-Wendroff method
accurately evolves the smooth Gaussian in time for the linear advection equation.
However, the box develops large, unphysical oscillations at its leading and trailing
edges. These oscillations arise because the dominant error in the Lax-Wendroff
method is dispersive in nature (i.e., it features an odd derivative of the solution).
Consequently, the various modes that contribute to the shape of the box travel at
different speeds and thus disperse over time.

3. Second Order Methods

In light of the results just described, an even better next step for achieving second
order accuracy and minimal dissipation while avoiding spurious oscillations at
discontinuities is to generate a hybrid method that rapidly shifts from second order
accurate in smooth regions to first order accurate and dissipative around
discontinuities. This is the idea behind the high-resolution, 2" order accurate



schemes incorporating slope limiters. In these schemes, the individual cells are
approximated as being piecewise linear functions,

c"(x,tp) = ¢ + 7" (x — xp), (16)
and the key to these methods is designing a function that calculates the slope, d;",
while accounting for whether the approximation atj is locally smooth, at a
discontinuity, or at an extremum. When the solution is smooth, the slope should
reflect the concentration of the neighboring cells, i.e., behave more like Lax-
Wendroff. Conversely, near discontinuities or extrema the slope should go to 0 so
that the approximation to the concentration in that cell becomes piecewise constant,
thereby increasing the local numerical dissipation and causing the flux function to
behave more like the standard LLxF.

The first step in developing such a function is to select an indicator of whether a
point is at a discontinuity or an extrema. A simple indicator is the ratio of slopes
around a point

CimcCi
0, = 1—— 17
J Cj+1—Cj ( )
If 6; is close to 1, then the function is varying smoothly around j; if it is negative,
then j is an extrema; and if it is very large or small, then j is to the right or left of a

discontinuity, respectively. Using 6; as an indicator of a given cell’s local

environment, one can then insert it into a slope limiter that modifies the slope to
account for this environment
b = 6+|0]

J 7 181

(18)

This ¢ is called the van Leer slope limiter and its behavior as a function of 0 is
shown in Figure 2. Also shown are two other slope limiters (Superbee and minmod)
that provide upper and lower bounds to the range of allowable values for slope
limiter functions while still guaranteeing the overall method is TVD. We incorporate
this function into the interpolation scheme by using it to calculate the values of c at
either side of a cell as follows

Cui-=6G+ §¢j(91)(cj+1 ~¢)

1
Gty =G~ ;¢ (6)(ce1 — ) (19)
Finally, these c values are used to calculate a LLXF flux at the cell boundary:
A 1 4. 1la. 1
~ _ 3 . Itz Jt3 _
Fia =72 (G2 ) +1(q,1))) 2 <Cj+§,+ Cj+§,—> ' (20)

Inspection of (20) reveals how the magnitude of the numerical dissipation now
depends on the difference in interpolated c values immediately to the left and right
of the cell boundary; when this difference is 0, (i.e., the approximation is a straight
line) the dissipation disappears.

Figure 3 demonstrates that ¢ behaves as we would hope. It approaches 0 (and
consequently F approaches the standard LLxF formula) as 6 approaches 0 and is 0
for all negative 0. Itis 1 when 0 is 1 (and as a result, the numerical dissipation



disappears). And it has a maximum value of 2 as 0 blows up so that it can accurately
capture discontinuities without leading to non-TVD behavior. Additionally, the
linear interpolation diagrams in Figure 4 confirm that this van Leer limiter is also at
least TV-stable because at no point is the magnitude of an edge value of c greater
than the maximum magnitude of the mean values of c in the domain. Figures 5a-c
demonstrate how incorporating the slope limiter restricts the numerical dissipation
to regions close to discontinuities.

In summary, combining the ideas developed in the past three sections, we arrive at a
second order accurate method for calculating the numerical flux in a non-linear

advection-diffusion problem:
A

~ j 1442195,1
— 2 _—2 2 —
Fra==7 (610 +1(6,1.) 2 <CJ+§,+ CJ'+%»—>’
Aj+% = —de_l_% - dh(c)j+%
a;,1 = max (f'(c)) over all u between ¢;and ¢z (21)
2

1
i =G+ 56,00 — )
Cj+%,+ =Cjy1 — %¢j(9j+1)(cj+2 - Cj+1)-
Using this flux approximation with (4) gives the complete numerical scheme.
Figures 6 shows results from a simulation similar to those in Figure 2 calculated
using the second order accurate given by (21). Note how much sharper the
discontinuities are in the simulations using (21).

The time step constraint for this method is like the CFL time step constraint of other
explicit diffusion methods. For example, the time step constraint is At < Ax?/2 for
a 1-D linear advection-diffusion problem solved using an explicit second order
accurate centered difference scheme in space and a forward Euler method in time.
Similarly, the time step constraint for the scheme in (21) is

2
At max; |V(xj+1) - V(xj) + s(cj+1) - s(cj)| < %. (22)

Adapting the scheme to higher dimensions on a Cartesian grid is straightforward.
One simply uses dimensional splitting whereby the problem is broken up into a
series of 1-dimensional problems along each axis. For example, to move forward 1
time step in a 2-dimensional problem, we first update the concentrations along the
y-direction and then the x-direction as follows:

At , = ~
* n

Cij=Cij— o Fijere = Fijoay2)
n+l _ % At px *

Cij =6Cj— E(Fiﬂ/z,j - Fi—l/z,j) (23)

Generally, some splitting error arises because the two operations do not necessarily
commute, but the method is used without major error in the problems discussed
next.

[1I. Validation



To validate the scheme described above, we first used it to study the evolution of a
linear advection-diffusion problem in which

h(c) =c¢
W) =1 (24)
Vr(c) =c

The goal of these simulations was to demonstrate that the method gives results
consistent with an analytical solution to the linear problem, has a spatial accuracy of
0(Ax?), and can be extended to 2-dimensions on a Cartesian grid using dimensional
splitting.

The Green’s function of the linear advection-diffusion problem on an infinite domain
is a Gaussian that translates and broadens with time according to

1 2
— 1 -(x-t)?/at
c(x,t) = . (25)
Similarly, in 2-dimensions, it can be shown using separation of variables that the
Green’s function is a product of Gaussians in the x and y-directions:

1 \2 _,._ .2 2
c(x,y,t) = (E) e~ (x=)7/4t o =(y-t)7/4t 26)

where it is assumed that the advection velocity is 1 in both directions. These
analytical solutions provide references with which to check the accuracy of our
scheme by measuring the L' and L™ error as the mesh size is refined.

To demonstrate how this error analysis is performed, we begin by using it on the
explicit centered finite difference method for solving the advection-diffusion
equation. In 1-D, this scheme is

n+l _ .n At - n n At - n n n
C] — C] + E Cj+1 - Cj—l) + m (Cj—l - ZC] + Cj+1) (27)
where we are using the Forward Euler method to evolve the system in time. Like
our LLxF method, this method also has O(Ax?) accuracy in space, first order

accuracy in time, and a time step constraint of At ~ Ax?/2.

Simulations were performed using (5) with the initial data

1 x?
¢(x,0) = ==exp (-%), x €(-55) (28)
The simulations were run to T = 0.8 using 16, 32, 64, 128, and 256 grid points. The

. . . . Ax?
time step for each of the simulations was calculated using At = % The boundary

conditions were dealt with by updating the boundary values at each time step with
the analytical solution. Figures 6a-c contain snapshots of the N = 128 simulation
overlaid on the analytical solution at different times; agreement between the
simulation and analytical results is visibly good. Figure 6j contains a log-log plot of
Ax versus L™ confirming that the method’s spatial accuracy is O(Ax?). The other
images in Figure 6 illustrate how the same set of experiments in 2-dimensions are
also second order accurate. These simulations were evaluated using the 2-
dimensional version of (27):

At
n+l _ n n n n n
Cir =¢ + Ax (k1 T Cjrrn — (€2 T Cg—1)) +



At
vz (Gl + oa Gkt Gl — 4¢f)) (29)
where k is the index along the y-direction and the x and y intervals are equal, and an

initial condition of
1 2

c(x,0) = (ﬁ)z exp (— %) exp (— 3%), x € (-55), y € (—5,5). (30)

Figure 7 are results from the same set of 1 and 2-D experiments applied to our LLxF
finite volume scheme. Given (24), s(c¢) isln (c) and dV is 1 in both the x and y
directions. A tolerance of 1e-12 was added to ¢ when calculating p to avoid issues
with taking the log of 0. The snapshots of the 1- and 2-D simulations shown in
Figure 7 illustrate how the scheme was well-behaved in both dimensions. Figures
7a-c illustrate how agreement with the analytical solution is very good. The log-log
plot shown in Figure 7j confirms that the simulations had a spatial accuracy of at
least O(Ax?) in both dimensions. Table 1 contains the L' and L™ errors and the
order of accuracy for all of the simulations.

IV. Flow in a Porous Medium

Having validated the spatial accuracy of the finite volume method against a model
linear advection-diffusion problem with an analytical solution, we next applied it to
a non-linear diffusion problem: liquid flowing under its own weight through a
porous medium. Mathematically, the mass balance equation for such a problem can
be expressed as

d.c = div{h(c)VV(x) + Vc™} (31
where m is some integer greater than 1. Unless otherwise specified, we set h(c)
equal to 0 so that only diffusive-like flow is occurring.

In 2-dimenions, it is possible to derive the following weak solution to (31) on an
infinite domain when m equals 2 using conservation of mass, radial symmetry,
continuity of flux, and self-similarity:

M 2 r2
c(x,t) = W(TE‘W) O<r<m (32)
0 o <T
where M is the total mass in the initial condition, r is the radius from the origin, and
16Mt\1/4
Ty = ( - ) (33)

This solution provides three metrics with which to gauge our simulation. First, the
radius of the liquid slug should increase like t1/4. Second, there should be a sharp
interface between the liquid-bearing and liquid-free regions (this interface becomes
sharper as m increases). Third, and most obviously, the concentration should
always be positive; negative concentrations are unphysical.

We performed simulations using (21) with h(c) set equal to 0 and several different
m (m=2,4,and 6) on 2 = (-5,5) x (-5,5). The initial conditions for these simulations
were



1 0<r<1

¢(x,0) = {0 1< r} (34)
The simulations ran to a final time of 5 with a time step calculated at each iteration
using (22) on a 200 x 200 grid. The s(c) for a given m is
2(0 -1) m = 2}

s(c) = {ml (c™1-1) m>2

-1
Figure 8 contains surface plots of the various simulations taken at the intervals
indicated. Cross-sections through the y-z plane of the simulations are shown in the
bottom row of Figure 8. In these cross-section plots, note the sharp interface
between the “wet” and “dry” regions, the lack of oscillations at the interface, and the
positivity of the solution, all of which agree with our expectations. Moreover, in
Figure 9, log(t) is plotted versus log(ro) for the m = 2 simulation and a linear fit to
the data has a slope of 0.22, which differs only slightly from the expected value of
0.25 due to the initial conditions.

(35)

As a final demonstration of the generalizability of this method, we performed an
additional 2-D simulation with a more general advection-diffusion equation:

0.c = div {xu + Vu*} (36)
using a 200x200 grid and an initial condition of:
_ 1 . _ 2 2
exp(-oromr) G- 2PHO+22<6
c(x,y,0) = _ 1 ; 2 2 (37)
exp ( 6_(x+2)2_(y_2)2) if (x+2)*+(y—-2)°<6

0 otherwise
on the domain (-10, 10) x (-10, 10). As before, the time step was held constant at 1e-

4. Surface plots of the results from this simulation are shown in Figure 10.

IV. Conclusions

The goal of this work was to implement the second order accurate finite volume
scheme reported in [1] and to use this scheme to study some advection-diffusion
problems. To this end, the second order accuracy of this scheme in space was first
validated by using it to study linear advection-diffusion problems in both 1 and 2
dimensions. The method was then applied to a non-linear diffusion problem: fluid
flow through a porous medium in 2 dimensions. In this simulation, the flexibility
and generality of the method were emphasized by incorporating a quadratic,
Burgers-type convection term. The results from the simulations described above
are encouraging and having implemented this numerical method, I now plan to
apply it to some more interesting problems in materials science. In particular, I
would like to use it to study the microstructures that evolve during the irradiation of
positive heat of mixing binary alloys. In these materials, there is a competition
between radiation-induced ballistic mixing and thermally activated segregation.
Both phenomena are essentially non-linear diffusion processes and so they should
be amenable to study using this method.
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Figure 1 - Images taken from simulations of linear advection problems calculated
using the methods indicated. The velocity in these simulations was 1, the number
of gridpoints was 200, and the time step was 3e-4. Notice how the first order
accurate Lax-Friederichs and upwind methods’ numerical dissipations cause the
shocks to disappear as the system evolves, whereas the error in the Lax-Wendroff

method gives rise to spurious oscillations.
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Figure 2 - Behavior of three important slope limiters (Superbee, Minmod, and van
Leer) as a function of the ratio of slopes around a cell j. The region between the
Superbee and Minmod slope limiters contains second order accurate and TVD slope
limiters. The van Leer limiter was the limiter used in the present work.
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Figure 3 - Demonstrations of a linear interpolation scheme using a van Leer slope
limiter; the black circles are the mean value in each of the cells, which are the
regions between the vertical gray lines. The starred data points at each of the cell

boundaries are the interpolated values of c. Note how at the extremum and

discontinuities, the interpolation scheme becomes piecewise constant, thereby

maximizing the diffusivity.
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Figure 4 - Demonstration of the rise in the numerical dissipation at discontinuities
when a linear interpolation scheme with slope limiters is used along with the Lax-
Friederichs method. The final figure is normalized magnitude of the diffusive flux.
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Figure 5 - The numerical approximation to the same problem studied in Figure 1
calculated using the local Lax-Friederichs scheme with slope limiters. The
difference in accuracy seen by incorporating the slope limiters is very apparent
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Figure 6 - Linear advection-diffusion simulation results using an explicit centered
finite difference method. Figures a-c are from simulations in 1-D and contain the
analytical solution. Figures d-i are from the 2-D simulations. The error analysis in
the final figure confirms that the method is 2" order accurate in both 1- and 2-D as
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Figure 7 - Linear advection diffusion simulation results using the 21d order accurate
finite volume method. Figures a-c are from simulations in 1-D and contain the
analytical solutions. Figures d-i are from simulations in 2-D. The error analysis in
the final figure confirms that in 1-D the method is 2 order accurate and that it is

roughly 2nd order accurate in 2-D as well.
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Table 1 - L™ and L' error table for the linear advection-diffusion problem.

1-D 2-D
L® L®Order | L' L' Order |L* L% Order | L! L' Order
16 | 1.47E-02 | - 4.80E-03 | - 8.80E-03 7.21E-04
32 | 4.25E-03 1.79 | 1.17E-03 2.04 | 6.49E-04 3.76 | 1.52E-04 2.24
64 | 1.14E-03 1.90 | 3.12E-04 1.91 | 9.15E-05 2.83 | 4.23E-05 1.85
128 | 2.89E-04 197 | 8.26E-05 1.92 | 2.83E-05 1.69 | 1.20E-05 1.82
256 | 7.22E-05 2.00 | 2.13E-05 1.96 | 7.73E-06 1.87 | 3.21E-06 1.90
512 | 1.80E-05 2.00 | 5.39E-06 1.98




Figure 8 - Non-linear flow of an initial slug of liquid through a porous medium
under its own weight. Each row contains images from simulations using the
exponent m and the time indicated. The cross-sections through the y-z plane in the
final figure compare results from the three sets of simulations. The approximations
are everywhere greater than or equal to 0 and the sharp, oscillation free interface
between the “wet” and “dry” regions is encouraging.
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Figure 9 - Log of the radius of the liquid slug in the m = 2 simulations plotted against

the log of the simulation time. A linear fit to this data has a slope of 0.22, which is
slightly lower than expected (0.25) due to the starting condition.
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Figure 10 - Demonstration of the generalizability of this method by using it to solve
a more complex advection-diffusion problem. Results match well with those
presented in Ref [1].
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