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1 Flow Battery Introduction

As renewable energy sources such as wind and solar power are becoming more viable, there
has been a significant push to integrate them into the power grid. However, many of these
renewable sources are transient, meaning that they cannot be relied upon to provide a
constant, controlled power output at all times. Because of this, traditional power plants
must be able to account for the fluctuations in power demand, however, doing so puts
extraordinary strain on the power plants. Therefore, having a way to buffer the transient
power sources during times of excess supply (sun/wind) and to dispense the stored energy
during times of deficient supply could mitigate the damage to traditional power plants.

One obvious approach is to use a battery as this buffer, but traditional batteries cannot be
scaled to the required capacity. Some companies, such as A123 Energy Solutions, have tried
to circumvent this limitation by essentially filling a cargo container with smaller batteries.
While this approach has been shown to be successful, a better solution is believed to exist.

One such solution is the “flow battery.” This configuration differs from a traditional battery
by separating the storage areas and reaction areas of the battery. This is illustrated in
the schematics in figure 1. The flow battery configuration allows you to pump non-reacted
anolyte/catholyte solutions into the reaction area of the battery from a tank, where the
normal chemical reactions take place, and the spent material is pumped into collection
tanks. This allows the battery to be scaled as large as the application requires.

Since detailed experimental data is not yet available for the materials being used in the actual
flow battery project occuring at MIT, parameters for the various equations were chosen so
that the solutions exhibited “interesting” behavior. That is, for the concentration field,
parameters were chosen so that both diffusion and convection were important, and neither
transport mechanism dominated the problem. The non-dimensional group corresponding to
this condition is called the Peclet number. The Peclet number is defined as

Pe =
LU

D
(1)
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where L, U , and D are characteristic length, velocity, and diffusion coefficient scales respec-
tively. A large Peclet number (Pe� 1) indicates that convection dominates. A small Peclet
number (Pe� 1) indicates that diffusion dominates the solution.

Figure 1: Left: schematic of a traditional galvanic cell. Right: schematic of flow battery.

2 Flow Battery Mathematical Model

The numerical model of the flow battery consists of solving a fluid flow problem coupled
to an advection-diffusion-reaction equation for species concentration. The species concen-
tration represents the concentration of reactants in the solution which can participate in
the reduction-oxidation (redox) reactions that take place inside the battery. Therefore, the
following equations must be solved simultaneously:

ρ
∂u

∂t
+ ρ (∇u) u = −∇P + µ∇2u (2)

∇ · u = 0 (3)

∂c

∂t
+ u · (∇c) = Q+D∇2c (4)

Equation (2) is the Navier-Stokes equation for an incompressible Newtonian fluid. This can
be derived from a more general statement of linear momentum balance. In this equation, ρ
is the mass density per unit volume, µ is the dynamic viscosity, P is the pressure field, and
u is the velocity field. Equation (3) is the incompressibility constraint on the fluid velocity
field.

Equation (4) is the transport equation for the scalar species concentration in an incompress-
ible flow field. In this equation, c is the species concentration, D is the diffusivity, and Q
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is the volumetric chemical reaction rate. This can be derived from the scalar continuity
equation using Fick’s law of diffusion

∂c

∂t
+∇ · j = Q (5)

where j = (−D∇c+ uc) is the flux of c into a differential volume. The volumetric reaction
rate Q represents the rate at which reactants turn into products. In a real battery system, Q
can be a complicated function related to the voltage of the battery, electronic conductivity of
the solution, ionic conductivity of the solution, and other factors. For the sake of constructing
a simple model, however, the reaction rate Q will be taken to be proportional to the local
concentration of reactant

Q = −k · c (6)

where k is a positive rate constant. This is not an unrealistic assumption to make, as it
implies that at any given time, each molecule of reactant has the same probability of turning
into product. It is a form often used in non-battery systems to model the concentration of
a chemical species over time.

The following sections will address the numerical solution of these partial differential equa-
tions.

3 Navier-Stokes Solver

The first task in modeling the flow battery is to solve the fluid flow equations. There are
multiple ways to solve the incompressible Navier-Stokes equations, so one was selected that
works equally well in 2D and 3D, thus ruling out the vorticity/stream-function formulation.
The method chosen was the projection method originally formulated by Chorin in 1967 [1].

3.1 Chorin’s Projection Method

The projection method is a procedure to solve the incompressible Navier-Stokes equations
using the primitive u and P variables, rather than solving solving for the vorticity and
stream function (ω−Ψ formulation) and post-processing for the velocity field. This has the
advantage of being equally simple to implement in 3D as in 2D, a feature that the ω − Ψ
formulation does not have. Another feature of the method is that the incompressibility
constraint is enforced exactly at every time step. The method relies on the Helmholtz
decomposition of a vector field into divergence-free and curl-free parts. The algorithm can
be illustrated using a semi-discretized form of the NS equations

un+1 − u∗

∆t
− µ

ρ
∇2u∗ = −(∇un)un (7)
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where u∗ is an intermediate velocity field that does not satisfy the incompressibility constraint
and supersctipt n and n + 1 refer to the nth and (n + 1)th timestep. Written this way, the
following relation holds:

u∗ = un+1 +
ρ

∆t
∇P n+1 (8)

Now the incompressibility constraint is enforced by taking the divergence of (8).

∇2P n+1 =
∆t

ρ
∇ · u∗ (9)

Equation (9) can be solved to find the pressure field that enforces an incompressible velocity
field at time tn+1. This pressure field can then be substituted into (8) to find the new velocity
field.

3.2 Staility

The stable time step may be obtained by analysis of simpler problems. First and foremost,
the Navier-Stokes are a combination of a one-way wave equation and a diffusion equation.
Therefore, a time step satisfying the stability of both of these problems individually will be
stable overall.

3.2.1 Wave Equation Stability

Velocity gradients were computed using an upwind one-sided difference. The relavent wave
equation to analyze for stability here is

un+1 − un

∆t
− c

uni+1 − uni
∆x

= 0 (10)

where c is the wave speed. By performing Von-Neumann stability analysis on this finite
difference equation, one can see that the stable timestep is

∆t <
∆x

c
(11)

In the Navier-Stokes equation, the wave speed is equal to the maximum velocity in the
problem. Using this to calculate the time step ensures that the problem is stable on the
whole domain.
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3.2.2 Diffusion Equation Stability

The diffusion equation appears in the Navier-Stokes equations through the ∇2u term. The
stable time step can again be computed using Von-Neumann stability analysis. The stablility
will be shown for both explicit and implicit schemes to justify the choice of integrating (7)
implicitly.

For explicit integration:

∂u

∂t
= D∇2u

un+1 − un

∆t
=

D

∆x2
(
uni+1 + uni−1 − 2uni

)

Following the growth of a Fourier mode u = eikx and defining the growth factor G = un+1/un:

(G− 1) =
∆tD

∆x2
(2 cos(θ)− 2)

The requirement for stability is that |G| < 1. The stable ∆t is therefore bounded by the
inequality

∆t <
∆x2

2D
(12)

The scaling of the time step with ∆x2 is unacceptable for simulations on fine grids where ∆x
is very small. This would lead to computation times that are excessively long. To remedy
this problem, consider implicit integration:

∂u

∂t
= D∇2u

un+1 − un

∆t
=

D

∆x2
(
un+1
i+1 + un+1

i−1 − 2un+1
i

)

Doing the same operation as above with the Fourier modes, we obtain

G− 1 = G
∆tD

∆x2
(2 cos(θ)− 2)

Now, when the constraint |G| < 1 is applied, we find that it is satisfied for any choice of ∆t.
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3.3 Performance on benchmark problems

In order to ensure the correctness of the Navier-Stokes solver, simulations were run on
benchmark problems and compared with theoretical or published solutions. First, simple
pressure-driven flow between parallel plates was analyzed because it has a known analytical
solution. Next, the solution to 2D lid-driven cavity flow was compared to simulations run
by Ghia et al [2].

3.3.1 Parallel Plate Flow

The simples benchmark problem was that of pressure-driven flow between parallel plates.
The top and bottom plates have no-slip boundary conditions, and the inlet and outlet have
pressure boundary conditions. Figire 2 shows a schematic of the problem.

Figure 2: Schematic of the pressure-driven parallel plate flow problem

The steady horizontal velocity field for this problem can be analytically obtained by removing
the transient terms from the Navier-Stokes equations and assuming that the x-velocity field
only has nonzero derivatives in the y-direction. The solution to this differential equation
with the appropriate boundary conditions is

ux(y) =
1

2µ

P1

L

(
Hy − y2

)
(13)

Figure 3 shows a comparison of the velocity profile at the x = L/2 cross-section between the
simulation results and the analytical solution.
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Figure 3: Comparison between simulation and analytical velocity profile.

The maximum velocity occurs at the centerline, and has the value ux(H/2) = P1H
2/(8µL).

Simuations were run using the values µ = 1, L = 1, P1 = 1000, H = 0.1 and the velocity
error was computed at the centerline. The results of the simulations are below in table 1.
The table shows that the simulations converge to zero error. The order of convergence is
approximately 1.

Ny error
25 0.0021
51 0.0012
75 0.0009

Table 1: Centerline velocity error vs mesh density in y-direction

3.3.2 Lid-driven cavity flow

The second benchmark problem is that of 2D lid-driven cavity flow. This has no analytical
solution, but the problem has been thoroughly studied both experimentally and numerically
and has been well-documented in the literature. The results from this study were compared
against those of Ghia et al [2].

The lid-driven cavity problem is a problem where the entire boundary is given dirichlet
boundary conditions—that is, all components of velocity are prescribed over the entire
boundary. The domain is an L × L square, and no-slip boundary conditions are applied
to the sides and bottom. The x-velocity is nonzero on the top, while the y-velocity is held
to zero. These are illustrated graphically in figure 4. It is important to note that, although
the terms “lid-driven cavity” and “shear-driven cavity” are often used interchangeably, the
shear-driven cavity problem imposes a traction on the top rather than a velocity.
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Figure 4: Schematic of the lid-driven cavity domain with boundary conditions

In order to assess the performance of the solver, simulations were run at multiple Reynolds
numbers and at multiple grid densities. Ghia et al published the x-velocity data at selected
points on a vertical line through the geometric center of the domain at several values of
Re, where Re = UL/ν. The solver was run until a steady-state solution was obtained at
Re = 100, 400, and 1000, and the results were compared against their data. A plot of the
comparison can be found below in figure 5. It can be seen that the published results are
virtually indistinguishable from the current study at every value of Re.

Figure 5: Comparison of results against published data from [2]
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4 Species Transport

4.1 Finite Difference Discretization

The scalar transport equation was discretized using similar operators as the Navier-Stokes
equations. Gradients were approximated by 1st order upwind derivatives, and the laplacian
was approximated by the 2nd order centered laplacian. The time derivative was approxi-
mated by the 1st order difference.

∂c(x)

∂t
=
cn+1
i,j − cni,j

∆t
(14)

The equation was integrated using 1st order implicit time integration. Higher order accuracy
was not considered for this PDE since the Navier-Stokes solver is only first-order accurate.
By using implicit time stepping rather than explicit time stepping, the stable time step was
proportional to ∆x rather than ∆x2. See the above analysis of stable time steps for explicit
and implicit schemes for a derivation of this.

4.2 Geometry and Boundary Conditions

The system was solved using the parallel plate geometry described above. The boundary
conditions for the fluid flow are the same as above. The boundary conditions for the con-
centration field are:

• c = c1 at x = 0

• No flux at y = 0 and y = H

• Outflow conditions at x = L: species were allowed to be carried out by the fluid flow

The concentration field was initialized to zero everywhere, but this does not impact the
steady state solution.

4.3 Steady State Solution

As mentioned in the introduction, exact material parameters are not known for the compo-
nents of the flow battery system. For this reason, parameters were chosen so that Pe ∼ 1.
This ensures that both diffusion and convection play a significant role in the solution. To
satisfy this, the diffusion coefficient D in (4) was chosen to be D = 0.01. Pressures at the in-
let were chosen over the interval P1 ∈ [100, 2000]. Upon post-processing, the Peclet numbers
ranged from 1.25 to 25.0. The values of the other parameters are µ = 1, ρ = 1000, k = 1.

The flow field for the coupled problem is the same as in parallel plate flow. See figure 3 for
a plot of the velocity profile at any value of x.
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The concentration field varied in both the x and y directions. A contour plot of a concentra-
tion field can be found below in figure 6. Since the concentration field is highly dependant
on the velocity field via the inlet pressure, the contour is simply a representative field.

Figure 6: Concentration contours for P1 = 1000

An effective way to visualize the impact of varying the inlet pressure is to plot the concen-
tration along the horizontal line y = H/2. This is plotted below in figure 7. The significance
of the changes in the concentration profile is explained in the following section.

Figure 7: Concentration profiles along the line y = H/2 at different inlet pressures
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4.4 Analyzing Battery Performance

Now that the battery system has been modeled, the results must be analyzed to determine
the effects of changing the operating conditions. One way to do this is to examine various
aspects of battery performance such as capacity and current generation capability. Then, a
performance metric is proposed in order to determine the optimal operating conditions for
the battery.

4.4.1 Battery Capacity

The most obvious effect of increasing the inlet pressure, and therefore flow rate, is that some
active material is convected out of the reaction area of the battery. This can be directly
interpreted as an effective loss of battery capacity. An effective capacity fraction of the
battery can be defined as

ε = 1−
∫
outlet

c(x) dA∫
inlet

c(x) dA
(15)

This new quantity ε reflects the fraction of the active battery material that reacts before
leaving the reaction area. A plot of the effective capacity vs inlet pressure is below in figure 8.
Values range from ε = 0.9983 at P1 = 100 to ε = 0.4555 at P1 = 2000. As P1 → ∞, ε → 0.
Using this effective capacity as the only performance metric, pumping at the lowest pressure
possible would appear to give optimal performance.

Figure 8: Plot of effective capacity fraction vs inlet pressure
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4.4.2 Battery Current

Another quantity of interest is the electrical current that the battery is capable of generating.
The electrical current is related to the reaction rate via Faraday’s constant F .

I = F ·
∫
k · c(x) dV (16)

The current is plotted against the inlet pressure below in figure 9. The actual value of
the current is not important since it is dependent on so many different parameters such
as geometry and chemistry, which are not considered in detail due to lack of experimental
information. Rather, the key feature of this plot is that the current is monotonically increas-
ing with inlet pressure. This is not an unexpected result, since the current is proportional
to the average concentration in the reaction area. This can be visually determined to be
the case in figure 7. Therefore, if the ability to generate current is the only performance
metric, the model predicts that optimal performance is achieved when inlet pressures are
as high as possible. This puts this performance metric directly at odds with the effective
capacity fraction performance metric, since what is optimal for one is the worst possible case
for the other. Due to this apparent contradiction, it may be useful to define an alternative
performance metric to characterize the performance of the battery.

Figure 9: Current generation as a function of inlet pressure

4.4.3 Combined Performance Metric

In order to address the apparently contradictory performance metrics of effective capacity
fraction ε and battery current I, a function to describe the performance of the battery that
utilizes both conditions must be created. Since the optimal battery maximizes both ε and
I, a simple function that could capture this behavior is
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M(P1) = ε(P1)I(P1) (17)

This function reaches its extremum when

dM

dP1

= ε
dI

dP1

+
dε

dP1

I = 0 (18)

Rather than evaluating the derivatives in (18), a plot of (17) was created to visually identify
the maximum. This plot is below in figure 10. This plot shows that the optimal battery
performance (according to this performance metric) is neither at P1 → 0, as ε alone would
predict, nor is it at P1 →∞, as I alone would predict. Rather, the optimum performance is
around P1 = 1000.

Figure 10: Plot of the combined performance metric M

5 Conclusions

In this study, a mathematical model of a flow battery was created by coupling a fluid dynam-
ics model, the Navier-Stokes equations, with a scalar transport law. In order to investigate
the behavior of the model, a finite difference solver was written to solve the coupled system
of partial differencial equations. The solution to the incompressible Navier-Stokes equa-
tions was approximated using a projection method by Chorin [1]. The performance of the
solver was analyzed by comparing its results to the analytical solution of 2D parallel plate
pressure-driven flow and to previously published results to the lid-driven cavity flow at mul-
tiple Reynolds numbers by Ghia et al [2]. Once the accuracy of the fluid solver had been
established, the resulting velocity field was used as the velocity field in a scalar transport
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equation modeling the evolution of battery active species concentration over a rectangular
domain.

The combined model was used to investigate the performance of the flow battery under
varying operating conditions. Upon doing this, an apparent paradox arose in characterizing
the battery performance, so a combined metric was proposed in an attempt to reconcile
two otherwise contradictory performance metrics. Using this performance metric, it was
shown that the battery performance was optimal at neither extreme of operating conditions,
indicating that careful engineering is necessary for the optimal performance of a real battery
system.

In order to improve the model, a more realistic reaction rate law could be implemented by
coupling an electrostatics model with the flow and species transport models. In addition,
experiments can be carried out to identify material properties such as diffusion coefficient,
viscosity, density, etc.
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