
The Navier-Stokes Equations

Henrik Schmidt-Didlaukies

Massachusetts Institute of Technology

May 12, 2014

I. Introduction

The Navier-Stokes equations are some of the
most important equations for engineering ap-
plications today. Many different methods, all
with strengths and weaknesses, have been de-
veloped through the years. This project uses a
finite difference approach for spatial and tem-
poral discretization, and a projection method
for the pressure. The viscosity is handled im-
plicitly to remove the restriction on the time
step.

II. The Navier-Stokes Equations

The basis for the following analysis is the con-
servation of mass and momentum. These may
be expressed mathematically as

dm
dt

= 0, (1)

and

d(mv)
dt

= ∑ f, (2)

respectively. The conservation of mass may be
expressed by creating a control volume, and
noting that the change of mass inside the con-
trol volume must equal the difference between
the rate at which mass enters and the rate at
which it leaves. The control volume is denoted
as Ω while its boundary is denoted by S. The
conservation of mass may therefore be written
in integral form as

∂

∂t

∫
Ω

ρ dΩ +
∫

S
ρv · n dS = 0, (3)

where ρ is the density of the fluid and n is
the outwards normal vector of S. By apply-
ing Gauss’ theorem the differential form of the

conservation of mass may be derived:

∂ρ

∂t
+∇ · (ρv) = 0. (4)

Assuming an incompressible fluid, the equa-
tion may be rewritten as

∇ · v = 0, (5)

which is the form that will be used in this
project. For the conservation of momentum,
we may use a similar approach to the conser-
vation of mass. The change of momentum in
the control volume must be equal to the net
rate at which momentum enters or leaves the
control volume, in addition to the sum of of
forces acting on it. It may be written in integral
form:

∂

∂t

∫
Ω

ρv dΩ +
∫

S
ρvv · n dS = ∑ f. (6)

The force term includes both surface forces
(pressure, stresses, surface tension) and body
forces (gravity, centrifugal and Coriolis forces,
electromagnetic forces). A common assump-
tion in fluid mechanics is that of the Newtonian
fluid. With this assumption, the viscous stress
tensor may be written:

τij = µ

(
∂ui
∂xj

+
∂uj

∂xi

)
− 2

3
µδij∇ · v, (7)

where δij denotes is the Kronecker delta and
µ is the dynamic viscosity of the fluid. The
pressure p is a scalar and acts like a normal
stress. One may therefore define

Tij = τij − pδij. (8)

Applying Gauss’ theorem to (6) and invoking
Leibniz’ integral rule for the time derivative

1

then yields

∫
Ω

(
∂ρv
∂t

+∇ · (ρvv)− div T− ρb
)

dΩ = 0.

(9)

Finally, assuming incompressible flow and
rewriting the whole equation in vector form
while neglecting other external forces:

∂v
∂t

+ v · ∇v = −1
ρ
∇p + ν∆v. (10)

ν is the kinematic viscosity of the fluid. The
equation is often made dimensionless by using
the variables

t∗ =
t
t0

x∗i =
xi
L0

u∗i =
ui
v0

p∗ =
p

ρv2
0

Inserting the above and rewriting the nonlinear
term by using (5) then yields:

∂v∗

∂t∗
+ v∗ · ∇∗v∗ = −∇∗p∗ +

1
Re

∆∗v∗, (11)

where Re = v0L0
ν is the Reynolds number,

which gives the ratio of inertial forces to vis-
cous forces. In the rest of the project, the vari-
ables are assumed to be dimensionless.

III. Temporal Discretization

An important part of the following method
is the Helmholtz-Hodge decomposition (also
referred to as the decomposition theorem of
Ladyzhenskaya), which states that any vec-
tor field defined on a simply connected do-
main may be uniquely written as the sum of a
divergence-free part and an irrotational part.

u∗∗ = un+1 + ∆t∇p,

where un+1 is divergence-free by incompress-
ibility, and ∇p is obviously irrotational, as the

curl of any gradient is zero as long as the
commutative property of the partial derivative
holds. The implicit viscosity may be dealt with
by defining another intermediate velocity:

u∗ = u∗∗ − ∆t
Re

∆u∗∗

The temporal discretization may then be writ-
ten as:

u∗ − un

∆t
= −un · ∇un (12)

u∗∗ − u∗

∆t
=

1
Re

∆u∗∗ (13)

un+1 − u∗∗

∆t
= ∇p (14)

The implicit viscosity gives three additional
Poisson equations to solve at each time step.
However, it removes a strict constraint on the
time step size. Inserting our approximations
back into the original Navier-Stokes equations
yields

∂un

∂t
+ un · ∇un =

−∇p +
1

Re
∆un+1

− ∆t
2

∂2un

∂t2 +
∆t
Re

∆(∇pn+1) + O(∆t2)

(15)

The method is therefore first order accurate in
time. It may be noted that second order projec-
tion methods can be constructed. They usually
center the Navier-Stokes equation around n+ 1

2
to make the time step second order, and use the
old pressure to remove the leftover pressure
seen in (15).

IV. Spatial Discretization

The spatial discretization is done on a stag-
gered grid, also called a MAC (marker and
cell) grid. The velocities are defined on the
faces of the cell, while the pressure is defined
in the center. Therefore, centered derivatives
of the velocities are defined in the cell center.
This is where they are needed to update the
pressure. Central derivatives of the pressure
are defined on the cell faces, which is where

2

they are needed to update the velocities af-
ter the the pressure gradient has been solved
for. However, special treatment of the no-slip
boundary conditions on walls parallel to the
velocity components is required.

The second derivatives are expressed by the
standard second order approximation:

∂2Ui,j,k

∂x2 =
Ui+1,j,k − 2Ui,j,k + Ui−1,j,k

∆x2 +O(∆x2).

(16)

The centered derivatives are also of second or-
der:

∂Ui+ 1
2 ,j,k

∂x
=

Ui+1,j,k −Ui,j,k

∆x
+O(∆x2). (17)

It must be noted that to have mathb f U∗ de-
fined on the cell faces (which is the easiest way
to compute U∗∗ and update the pressure), the
terms of the convective part must be averaged:

U∗ −U
∆t

= −((Ūx)2)x− (ŪyV̄x)y− (ŪzW̄x)z

(18)

V∗ −V
∆t

= −(ŪyV̄x)x− ((V̄y)2)y− (V̄zW̄y)z

(19)

W∗ −W
∆t

= −(ŪzW̄x)x− (V̄zW̄y)y− ((W̄z)2)z

(20)

In (18)-(20), subscript denotes partial derivative
direction and superscript denotes averaging di-
rection.

For a general flow, it is usually beneficial
for stability to use upwinding when calculat-
ing the first order derivatives. The idea is to
get information from the opposite direction of
the flow direction. First, differenced quantities
are defined as:

Ũx
i+ 1

2 ,j,k =
Ui+1,j,k −Ui,j,k

2
(21)

Again, the superscript denotes direction. Com-
bining the above equation with (18)-(20), and

defining the parameter γ which defines the
amount of upwind, one can write:

U∗ −U
∆t

=− ((Ūx)2 − γ|Ūx|Ũx)x

− (ŪyV̄x − γ|V̄x|Ũy)y

− (ŪzW̄x − γ|W̄x|Ũz)z (22)

The other directions are handled in the same
manner. A closer look at one of the compo-
nents from above:

((Ūx)2 − γ|Ūx|Ũx)i+ 1
2
=

(
1−γ

2

)
Ui+1 +

(
1+γ

2

)
Ui if Ūx

i+ 1
2
≥ 0,(

1+γ
2

)
Ui+1 +

(
1−γ

2

)
Ui if Ūx

i+ 1
2
< 0.

(23)

Hence, γ = 0 gives central differencing while
γ = 1 gives full upwinding. For the lid-driven
cavity flow, the boundary conditions are no-
slip conditions on all sides. The lid moves at
normalized velocity U = 1. When the velocity
component is normal to the wall, we can im-
pose the Dirichlet boundary condition directly.
When this is not the case, ghost cells are used
to ensure the correct velocity on the walls after
averaging:

Ui,G + Ui,1

2
= Ui,B ⇐⇒ Ui,G = 2Ui,B−Ui,1,

(24)

where B denotes the boundary and G denotes
the ghost cell. The pressure has homogeneous
Neumann boundary conditions on all sides.
Since the pressure is defined in the cell centers,
it suffices to let the values on each side of the
wall be equal. For the left boundary:

PG,j − P1,j

∆x
= 0 ⇐⇒ PG,j = P1,j (25)

V. Implementation

Matlab was chosen for implementation due
to its simple syntax and acceptable speed for
small problem. However, much memory is re-
quired to run the code and the number of grid

3

points was therefore limited to 403. It must be
said that it is quite low for a first order method.

The Poisson equations were solved by creat-
ing a K3D matrix and solving the resulting lin-
ear system with Matlab’s mldivide (backslash).
If a matrix is triangular, mldivide will solve the
system by elimination with reordering. The
system matrix is made triangular through the
Cholesky factorization. The requirement is that
the system matrix is Hermetian (symmetric for
real matrices) and positive definite.

The K3D matrix is constructed using the
K1D matrix and the Kronecker tensor product:

K3D = Iz ⊗K1Dx ⊗ Iy

+ Iz ⊗ Ix ⊗K1Dy + K1Dz ⊗ Ix ⊗ Iz.
(26)

VI. Results and Validation

Two cases were run with Re = 1 and Re = 500.
As one would expect, the result is symmetric
around the plane z = .5. For the low Reynolds
number flow, the z-component of the velocity is
mostly zero. For the higher Reynolds number
a, there is more motion in the z-direction.

Figure 1: Re = 1

0

0.5

1
0

0.5
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2: Re = 500

The lid-driven cavity flow is a common
benchmark for CFD-codes in 2D. In 3D, less
material to validate against exists. The follow-
ing compares the code written in this project
to a Boltzmann lattice method.

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 3: U along the line x = 0.5, z = 0.5 from this
project

4

Figure 4: U along the line x = 0.5, z = 0.5, reference
solution

References

[Seibold, 2008] Seibold, B (2008). A compact
and fast Matlab code solving the incom-
pressible Navier-Stokes equations on rect-
angular domains

[Strang, 2012] Strang, G (2012) Computational
Science and Engineering

5

