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Introduction 

Perfect Matched Layer (PML) is an important kind of numerical boundary condition in 

wave propagation simulations, which is always applied to mimic the infinite large space or in 

situations of perfect absorption in reality. The first study about PML dates back to 1994 [1]. In 

this work, the author constructed a PML for time dependent Maxwell equations using field split 

method. After that, different PMLs (split-field PML, uniaxial PML, and coordinate transformation 

PML) has been constructed for both electromagnetic wave [2][3][4]and acoustic wave 

problems[2][5][6].   

In this course project, I study the PML in 2-D acoustic wave propagation, and explore 

and evaluate the factors that affect the PML performance. 

System model and acoustic wave equations 
 

 
Fig.1 System model 

 

The main objective of this project is to numerically construct perfect matched 

layers around a 2-D square region to reduce the reflection of the acoustic wave from a 

point source in the middle of this region (Fig. 1).  The width of interior region is 1m, and 

the width of PMLs is 0.2m. The interior region is filled with air (sound velocity  c =

340𝑚/s, density ρ = 1.2kg/𝑚3 ). 

The acoustic wave equations in air are as follows: 
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where p is the perturbed pressure and u, v are perturbed velocities in x and y directions 

respectively. 

 

The point source locates at the center of the square region. The pressure of this 

source is a sinusoidal function of time. 

PML construction 

The PML layers are constructed by adding dissipative terms in order to attenuate 

outgoing waves exponentially, and in the meanwhile, the wave should be continuous at the 

interface of the interior region and the PML region. For the 2-D problem here, two attenuation 

coefficients, 𝜎𝑥 and 𝜎𝑦 , are introduced into the equation according to [1][2].  𝜎𝑥 and 𝜎𝑦 

increase gradually from the inner boundary to the outer boundary of the PML layers. That is to 

say, 𝜎𝑥 =
𝑥𝑖

𝑤𝑃𝑀𝐿
𝜎𝑚𝑎𝑥 , 𝜎𝑦 =
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𝜎𝑚𝑎𝑥, where 𝑥𝑖 and 𝑦𝑖  are distances to the inner boundary of 

PML layers, 𝑤𝑃𝑀𝐿 is the width of the PML layer, which is 0.2m here, and 𝜎𝑚𝑎𝑥 is the largest 

value of the attenuation coefficient. 

After the transformation, the acoustic wave equations become [2] 
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In the two PML layers at x –axis side, 𝜎𝑥 > 0 𝑎𝑛𝑑 𝜎𝑦 = 0. In the other two PML layers at 

y-axis side, 𝜎𝑦 > 0 𝑎𝑛𝑑 𝜎𝑥 = 0. 

Computation 

The equations (2) are a set of partial differential equations. A central difference scheme 

is applied to discretize the 2-D first order spacial derivative and the Leapfrog method is applied 

to the first order time derivative. The total accuracy of the computational method is of second 

order. 

For the central difference in space, we have 
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Similar expressions can be obtained for the first order derivatives of 𝑢, v, 𝑄, and 𝑅 in 

(2). 

For the Leapfrog scheme in time domain, we have 
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Results 

In all the simulations below, the time dependence of perturbed pressure at the point 

source is  

𝑝0 = cos (2𝜋𝑓𝑡), 

where 𝑓 = 2720𝐻𝑧 （wavelength λ =
c

𝑓
=

340

2720
= 0.125m）. 

In the discretization scheme, ∆𝑥 =∆𝑦=1/200 m, ∆𝑡=1/13600000 s. 

First, I simulate the pressure profile 𝑝 at different times t =
2

f
,

4

f
, 𝑎𝑛𝑑

6

𝑓
 , when the 

largest attenuation coefficient σ𝑚𝑎𝑥 = 0, 5, 50, 𝑎𝑛𝑑 100. The results are shown in Fig. 2. 

We can see that when t ≤
2

f
, the wavefront haven’t propagate to the interface between 

PMLs and the interior region. When t >
2

f
, the wavefront reaches the interface. When σ𝑚𝑎𝑥 =

0 𝑎𝑛𝑑 5, there is no attenuation or small attenuation in the PMLs, thus we still see reflected 

waves backward the interior region. When σ𝑚𝑎𝑥 = 50 𝑎𝑛𝑑 100 , there is little reflection at the 

interface of PML and interior region. The outward wave is almost dissipated by the PMLs. 

Two movies for σ𝑚𝑎𝑥 = 0 𝑎𝑛𝑑 100 are attached to show the effectiveness of the PMLs 

in this simulation. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 Simulation results at different time t for different 𝜎𝑚𝑎𝑥 
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Discussions 
 

1. The PMLs are only reflectionless for exact continuous wave equation. But in any 

computer simulations, the wave equation is discretized, so there will be numerical 

reflections [7]. The reason the attenuation coefficient is set to increase from the 

inner boundary to the outer boundary is to reduce this numerical reflection. 

2. The analysis shown in this project can only be applied to Cartesian coordinates. The 

wave equations and the attenuation coefficient must be adjusted in order to be 

applied to other coordinate systems. 

3. There is a trade-off between the thickness of the PMLs and the σ𝑚𝑎𝑥. On one hand, 

for thinner PMLs, we need larger σ𝑚𝑎𝑥 in order to achieve better attenuation. 

However, this also means the gradient of σ𝑚𝑎𝑥 from inner boundary to outer 

boundary is larger, which will generate more numerical reflection. On the other 

hand, thicker PMLs need more simulation time and computer memory. We always 

need to find a balance between these two factors. 

4. In the acoustic wave equations after transformation, the time derivative becomes 
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If we consider the 1-D case, then  
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Then we have  
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Where kc = 𝑘 − 𝑖𝜎𝑥 , 

 

In which 𝜎𝑥 is the term that causes dissipation. We can see that the 

dissipation is frequency independent. 
 

5. In positive index materials, if the phase velocity has positive sign, and if 𝜎𝑥 > 0 

and 𝜎𝑦 > 0, the outgoing wave is attenuated in PML. However, in negative 

index metamaterials, the outgoing wave has negative phase velocity, thus 

will be amplified by the PML. The PML lost its effect in this case. 

  



Conclusion 
 

In this project, I studied the Perfect Matched Layers (PML) and their application in 

acoustic wave simulations. PMLs for a square region are constructed and tested under a point 

source in the center of the region. Results show that the PML I constructed can effectively 

attenuate the outgoing wave and generate little reflection. 
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