
High-Order Finite-Difference Discretization for
Steady-State Convection-Diffusion Equation

on Arbitrary Domain ∗

Abdulaziz Albaiz (baiz@mit.edu)

May 11, 2014

Abstract

In this project, a high-order discretization technique for stationary
convection-diffusion equation is introduced and implemented in differ-
ent 1D, 2D, and 3D applications. This technique uses finite-difference
method to approximate first- and second-order derivatives for inter-
nal points, but utilizes local extrapolation functions for points that are
close to the domain boundaries. This is particularly useful for prob-
lems with arbitrary domains and irregular boundaries. The generated
matrix is symmetric when constant or linear extrapolation is used, and
is non-symmetric when higher-order extrapolation, such as quadratic
or cubic, is used. In addition to using Matlab’s backslash operator to
solve the system, GMRES is implemented as a Matlab function and
is also used for solving the system. We show that this discretization
technique can achieve fourth-order accuracy when fourth-order FD
approximation is used with cubic interpolation functions.

∗This project is mostly based on: Gibou, Frédéric, and Ronald Fedkiw. ”A fourth
order accurate discretization for the Laplace and heat equations on arbitrary domains,
with applications to the Stefan problem.” Journal of Computational Physics 202.2 (2005):
577-601.

1

1 Finite-Difference Discretization of Convection-

Diffusion Equation

1.1 Steady-State Convection-Diffusion Equation

The 1D convection-diffusion equation is given as

∂u

∂t
= V

∂u

∂x
+D

∂2u

∂x2
+ f

In general, the convection-diffusion equation can be written as

∂u

∂t
= V∇u+D∇2u+ f

We will only deal with steady-state convection-diffusion equation, where
the time-dependent term ∂u

∂t
= 0. Therefore, the general-form equation be-

comes

V∇u+D∇2u = −f
Many PDEs, such as Poisson’s equation, ∇2u = −f , are special cases of

the convection-diffusion equation. In this paper, we will solve these PDEs by
discretizing them on arbitrary domains using higher-order approximations,
generating the linear system matrix, then solving the system using some
solver, such as Matlab’s backslash operator.

1.2 High-Order Finite-Difference Approximation

Discretization of the convection-diffusion equation using finite-difference method
is performed by using approximations of the first and second derivatives of
u. One of the most used FD approximation for second derivate is the second-
order central-difference approximation

∂2u

∂x2

∣∣∣∣
i

≈ ui−1 − 2ui + ui+1

∆x2

Because we want to achieve higher-order accuracy, better approximations
of the derivatives are used. More specifically, fourth-order central-difference
approximations of the first and second derivatives are used. These approxi-
mations use five-point stencils in 1D, as shown in figure 1. The approxima-
tions are

2

Figure 1: Five-point stencil in 1D

∂u

∂x

∣∣∣∣
i

≈
1
12
ui−2 − 2

3
ui−1 − 2

3
ui+1 + 1

12
ui+2

∆x

∂2u

∂x2

∣∣∣∣
i

≈
− 1

12
ui−2 + 4

3
ui−1 − 5

2
ui + 4

3
ui+1 − 1

12
ui+2

∆x2

Hence, the 1D convection-diffusion equation can be approximated as

V
1
12
ui−2 − 2

3
ui−1 − 2

3
ui+1 + 1

12
ui+2

∆x

+D
− 1

12
ui−2 + 4

3
ui−1 − 5

2
ui + 4

3
ui+1 − 1

12
ui+2

∆x2
= −fi

The ith row of the Matrix A, corresponding to the coefficients that ap-
proximate ui, is computed, and we get the linear system Au = f .

A simple way to extend this approximation to 2D and 3D is to keep the
approximations of each dimension and derivate separate. For example, the
2D convection-diffusion equation

Vx
∂u

∂x
+ Vy

∂u

∂y
+D(

∂2u

∂x2
+
∂2u

∂y2
) = −f

can be approximated by replacing each derivate with its approximation,
then the coefficients are computed and added to the matrix A. The approxi-
mation of the 2D convection-diffusion equation will result in a 9-point stencil,
as shown in figure 2. By keeping the numerical discretization of each derivate
independent, it is trivial to extend the procedure to 2D and 3D.

3

Figure 2: Nine-point stencil in 2D

2 Discretization of Arbitrary Domain Bound-

aries

The above-described finite-difference method works well with regular rect-
angular grid, and boundary conditions, whether they are Dirichlet or Neu-
mann or a mix of both, can be easily incorporated in the matrix A and the
right-hand side. However, a problem with irregular grid or arbitrary domain
cannot be easily represented using this scheme. One approach is to map the
irregular domain to a Cartesian rectangular domain, and mapping functions
to translate between the original and new domains. This approach, however,
only works with certain domains where such mapping functions can be found.

In this section, we will introduce an approach where extrapolation func-
tions are used at the points near the boundaries. This approach works well
for problems with arbitrary domains, and does not require domain transfor-
mation into a different coordinate system.

For the rest of this paper, we will assume that all the boundaries are
Dirichlet boundaries. Neumann and other types of boundaries conditions can
be easily incorporated into the matrix in a similar fashion to the traditional
finite-difference method.

4

Figure 3: The Cartesian domain Ω is split based on the interface Γ into an
internal domain Ω− and external domain Ω+

2.1 Domain Interface

For a given steady-state convection-diffusion problem with arbitrary domain,
we will define the Cartesian domain as Ω ⊂ Rn. The boundary ∂Ω defines
the exterior boundary of Ω, where as the problem’s arbitrary domain, also
called the interface, is defined as Γ. We split Ω into two disjoint sets, Ω−,
which is the part inside the interface Γ, and Ω+ that is the rest of the domain
which lies outside Γ. Figure

The interface Γ intersects with the grid at arbitrary points that are not
necessarily discretization points. In the case of 1D, the interface is simply
two points at the beginning and the end of the interior boundary. Although
the 1D case does not really represent an arbitrary domain, it is used to
demonstrate how the arbitrary boundary is treated in this technique, as the
2D and 3D cases will be very similar.

Figure 4 shows the last few points in the internal domain Ω−, followed
by the interface point uI ∈ Γ, then the exterior domain Ω+. Because the
point ui is near the end of the internal domain, the FD approximation of
its derivatives require the values of the two points that are in the external
domain Ω+. However, these points are not part of the problem’s domain

5

Figure 4: At the boundary, interface point uI is used for extrapolating the
ghost points uGi+1 and uGi+2

Figure 5: In 2D, the ghost points outside the boundary are extrapolated in
each dimension independently

and therefore their solution values are not known. We will call these points
’ghost’ points, and denote them as uGi+1 and uGi+2.

This can be extended to 2D and 3D, where the idea of arbitrary domain
makes more sense than the 1D case. Figure 5 shows a subset of the domain
with an interface curve that splits the domain into internal domain Ω− and
external domain Ω+. The approximation of the marked point ui,j depends
on 2 ghost points in the x-direction, and 2 ghost points in the y-direction.
As the approximation of derivatives is done independently for each axis, the
technique can be extended easily from 1D to 2D and 3D.

Note that the interface Γ does not necessarily intersect with the grid at
discretization points ui,j, and therefore there is no restriction on the problem’s

6

arbitrary domain.

2.2 Local Extrapolation Functions

The point ui in the 1D case, shown in figure 4 has the following FD approx-
imations

∂u

∂x

∣∣∣∣
i

≈
1
12
ui−2 − 2

3
ui−1 − 2

3
uGi+1 + 1

12
uGi+2

∆x

∂2u

∂x2

∣∣∣∣
i

≈
− 1

12
ui−2 + 4

3
ui−1 − 5

2
ui + 4

3
uGi+1 − 1

12
uGi+2

∆x2

where the points uGi+1 and uGi+2 are ghost points that are not part of the
solution vector u, and therefore, their values are unknown. One way of re-
solving this issue is to include the set of all ghost points into the solution.
This, however, will result in a larger and more complicated system of equa-
tions, and is not practical as these ghost points also require additional points
that are not part of the solution.

Instead of trying to find the numerical solutions at the ghost points,
extrapolation functions are used to approximate the values at these points.
The known points, namely uI , ui, ui−1, etc., are used to create approximation
functions that are then evaluated at the ghost points, and these values are
used in the FD approximation.

Assuming u(x) is the solution function of the 1D problem, it is only valid
for x ∈ Ω−. The value uI at the interface point is known since we are using
Dirichlet boundary conditions. Let ũ(x) be the extrapolation function that
will be used for the external domain, i.e. x ∈ Ω+. We will assume that the
extrapolation functions is shifted such that ũ(0) lies on the point ui. The
following different types of extrapolation functions ũ(x) can be used:

• Constant extrapolation: ũ(x) = uI . This implies that all the point in
the external domain have the same value as the interface.

• Linear extrapolation: ũ(x) = ax + b. To find the coefficients a and b,
we solve a system the system of equations

ũ(0) = ui, ũ(xi − xI) = uI

7

Figure 6: Different extrapolation functions to evaluate the ghost points uGi+1

and uGi+2

• Quadratic extrapolation: ũ(x) = ax2 + bx+ c. The coefficients a, b and
c can be found by solving the following system:

ũ(0) = ui, ũ(−∆x) = ui−1, ũ(xi − xI) = uI

• Cubic extrapolation: ũ(x) = ax3 + bx2 + cx + d. The coefficients are
the solution of the system:

ũ(0) = ui, ũ(−∆x) = ui−1, ũ(−2∆x) = ui−2, ũ(xi − xI) = uI

Figure 6 shows examples for each of the extrapolation functions, and the
points that are used to construction these functions. Once the extrapolation
function is found, the ghost points are evaluated as uGi+1 = ũ(∆x) and uGi+2 =
ũ(2∆x). These values are then used in the FD approximation of the first-
and second-derivatives.

It is also worth mentioning that the number of ghost points is not always
two. The FD approximation of the point ui−1, for example, has only one

8

ghost point. However, the same ghost-point values that were used for ui can
be used directly for ui−1 without the need to reconstruct the extrapolation
function.

The extension of this technique to 2D and 3D is quite trivial, as each
dimension is dealt with independently. In the case of 2D, shown in figure
5, the ghost points in the x-direction are evaluated separately using the
extrapolation function, then the two y-axis ghost points are evaluated. The
values are then used in the FD approximations of the derivatives. The same
goes for 3D, as an additional step for evaluating the z-axis ghost point is also
performed. The number of ghost points required for each point may vary
between zero, one, or two in each dimension, depending on the shape of the
interface Γ.

Although this technique works for most arbitrary domains, it is impor-
tant that the domain is convex. Having non-convex domain may result in
having a point ui surrounded by ghost points in all dimensions. Although
the technique can still be used to extrapolate the points using as much data
as available, the accuracy of the solution is not necessarily guaranteed to
maintain the same order.

3 Application Examples

The described technique is implemented in Matlab with different extrapo-
lation functions. Two examples are described in this section: a simple 1D
Poisson equation example, and 2D stationary convection-diffusion problem.

3.1 1D Poisson Equation

The first example is a 1D Poisson equation in the form

∂2u

∂x2
= −f

The Cartesian domain is [0, 1], and we will use an arbitrary domain Γ
defined by the interval [0.1813, 0.8824]. The objective of this example is
to verify the correctness of the technique in approximating the solution with
different extrapolations around the domain interface. The particular problem
that will be solved is

9

Figure 7: Solution of the 1D Poisson equation with Dirichlet arbitrary bound-
aries

∂2u

∂x2
= −1 for x ∈ Ω−, u(x) = −0.5x2 + 0.5x− 0.05 for x ∈ Γ

The matrix is first built using the fourth-order FD approximation of ∂2u
∂x2 ,

resulting in a sparse matrix with 5 diagonals. The rows corresponding to the
points near the interface Γ are then updated with the corrected coefficients,
based on the type of extrapolation that is used. Constant extrapolation
affects only the right-hand side b of the system, the linear extrapolation up-
dates the diagonal entries of the matrix as well. Both of these extrapolation
functions maintain the symmetry of the matrix A.

Quadratic and cubic extrapolations result in changes in non-diagonal en-
tries in a non-symmetric way. Hence, the resulting matrix A is not symmetric.
Quadratic extrapolation modifies the coefficients of the diagonal entires, as
well as the ones immediately next to them. Cubic extrapolation, on the other
hand, modifies two off-diagonal entries in addition to the diagonal.

Once the system’s matrix A and right-hand side b are constructed, the
solution is obtained directly using any linear solver. In these examples, we use
both Matlab’s backslash operator, as well as GMRES method. Both result
in the same solution. However, Matlab’s backslash operator is much faster
than the GMRES implementation since it is pre-compiled and optimized.

10

N |xnumerical − xexact|∞ Order
16 3.496× 10−4 -
32 8.921× 10−5 1.97
64 2.247× 10−5 1.98
128 5.663× 10−4 1.98

Table 1: Error and order of 1D Poisson with linear extrapolation

N |xnumerical − xexact|∞ Order
32 2.751× 10−5 -
64 2.398× 10−6 3.52
128 1.858× 10−7 3.69
256 1.271× 10−8 3.87

Table 2: Error and order of 1D Poisson with cubic extrapolation

The solution, shown in figure 7, is computed for number of points N
with different extrapolation functions. Table 1 shows the error orders for
linear extrapolation, while table 2 shows the cubic extrapolation. We notice
clearly how the linear extrapolation provides a second-order accuracy, while
the cubic extrapolation is close to fourth-order accuracy.

3.2 2D Steady-State Convection-Diffusion Equation

In this example, the stationary convection-diffusion equation is solved numer-
ical with arbitrary boundary. The equation that is solved in this example
is

∂u

∂x
+ 2

∂2u

∂x2
+ 2

∂2u

∂y2
= −1 for x ∈ Ω−

with the boundary u(x, y) = sin(πx)+sin(πy)+cos(πx)+cos(πy)+x6+
y6 for x ∈ Γ

The boundary is the same as the one shown in figure 3, which is given
using the parametric form

11

Figure 8: Solution of the 2D convection-diffusion equation with cubic extrap-
olation

x(r) = 0.02
2
√

5 + (0.5cos(r) + 0.2cos(r)sin(5r)

u(r) = 0.02
2
√

5 + (0.5sin(r) + 0.2sin(r)sin(5r)

The system is constructed and solved in a similar fashion to the 1D Pois-
son equation. Each derivate is approximated independently in each axis. A
loop over all the grid points is used to test for points that are near the bound-
ary, and update these points with the extrapolated coefficients for the ghost
points. The solution to this system, with cubic extrapolation and fourth-
order approximations, is shown in figure 8 (figure source: Gibou’s paper).

4 Conclusion

The technique discussed in this paper provides a simple method for solving
the general steady-state convection-diffusion equation with an arbitrarily-
shaped domain. Through the analysis and examples of this technique, it was
shown that it could achieve fourth-order accuracy once the correct higher-
order approximations are used together with the cubic extrapolation func-
tions near the boundaries.

The technique, however, has certain limitations that may render it im-
practical for certain applications, especially when high-resolution grid is used.

12

One of the limitations is that the extrapolation functions work well only when
the interface intersection point xI is far enough from the discretization points
xi, i.e. |xI−xi| is large enough. As |xI−xi| → 0, the extrapolation functions
are distorted heavily, and the approximations of the ghost points are not ac-
curate anymore. This is more likely to happen when the grid resolution N
is large.

Another limitation of this technique is that, even though it permits for
arbitrary boundaries, these boundaries must be convex. Since points near
the boundary are used to extrapolate the ghost points, having non-convex
boundary may result in orphan points that cannot be extrapolated nor used
for extrapolation.

In general, this technique is useful for low- to mid-resolution problems
with convex non-rectangular boundary.

13

	Finite-Difference Discretization of Convection-Diffusion Equation
	Steady-State Convection-Diffusion Equation
	High-Order Finite-Difference Approximation

	Discretization of Arbitrary Domain Boundaries
	Domain Interface
	Local Extrapolation Functions

	Application Examples
	1D Poisson Equation
	2D Steady-State Convection-Diffusion Equation

	Conclusion

