Exercise 10 Consider the heat equation on a rod of length π, which has a fixed temperature at both ends.

$$\begin{align*}
\left\{ \begin{array}{ll}
u_t = u_{xx} & \text{for } (x,t) \in [0,\pi] \times [0,t_f] \\
u(x,0) = u_0(x) & \text{for } x \in [0,\pi] \\
u(0,t) = u(\pi,t) = 0 & \text{for } t \in [0,t_f]
\end{array} \right.
\end{align*}$$

Let the final time be $t_f = 0.1$. We can measure the temperature distribution at the final time $u(x,t_f)$, and would like to reconstruct the initial temperature distribution $u(x,0)$ from it.

1. Explain why this problem is ill-posed. Give an example of a function $u(x,t_f)$ which no valid initial function $u(x,0)$ exists for.

2. We approximate the problem by a finite dimensional problem, by considering a finite number of Fourier coefficients

$$u(x,t) = \sum_{k=1}^{N} c_k(t) \sin(kx) \quad (1)$$

At a given time t, we can then write the solution as a vector

$$c(t) = \begin{pmatrix} c_1(t) \\ \vdots \\ c_N(t) \end{pmatrix}$$

Give an expression for the coefficients $c_k(t)$, using the initial coefficients $c_k(0)$. What is the relation between $\|u(\cdot,t)\|_{L^2([0,\pi])} = (\int_0^\pi u(x,t)^2 dx)^{1/2}$ and $\|c(t)\|_2$?

3. Give the matrix A_t which maps $c(0)$ to $c(t)$, i.e. $c(t) = A_t \cdot c(0)$. Approximate your example function from part 1 by a finite number of Fourier coefficients, using A_{t_f} to compute $c(0)$. Compute and plot the approximate functions $u(x,t_f)$ and $u(x,0)$ using formula (1).

4. Fix a number of Fourier coefficients N, and choose the initial condition to be $c_k(0) = \frac{1}{Z} \exp(-\frac{k^2}{4})$, where the constant Z is chosen, such that $\|u(\cdot,t_f)\|_{L^2([0,\pi])} =$
\[\sqrt{2}. \] We try to measure the exact vector \(c(t_f) \), but the measurement involves an error \(e \), so we actually measure \(c^e(t_f) = c(t_f) + e \). Choose the error to be of the form \(\tilde{e}_k = \exp(-\frac{k}{4}) \text{randn} \), and then scale the components \(e_k = \frac{1}{Z_e} \tilde{e}_k \), such that \(||e||_2 = \delta ||c(t_f)||_2 \).

Give a formula for the reconstructed initial vector \(c^e(0) = A^{-1}_{t_f} \cdot c^e(t_f) \) and the thus made error \(||c^e(0) - c(0)||_2 \). Explain why the problem requires regularization.

5. Let \(c^{e,\alpha}(0) \) denote the solution to the Tychonov regularized backwards problem

\[
 c^{e,\alpha}(0) = (A^T A + \alpha I)^{-1} A^T \cdot c^e(t_f)
\]

Compute the error to the correct initial condition \(||c^{e,\alpha}(0) - c(0)||_2 \) in dependence on the regularization parameter \(\alpha \), and find the \(\hat{\alpha} \) which this error becomes minimal for. You can do this either by hand (doable, but technical) or by writing a matlab program, which runs through different values of \(\alpha \) and finds the minimizer. Plot the error as a function of \(\alpha \) for interesting values of \(N \) and \(\delta \).

6. For \(N = 5, 10, 15 \), produce plots of the optimal \(\hat{\alpha} \), which minimizes the error, in dependence on the relative error size \(\delta \). Again, this can be computed by hand, or in matlab, by running step 5 for a list of values for \(\delta \). Compare the results to the theoretical estimate for the optimal \(\alpha \), provided in Section 8.2 in Strang’s CSE book. Explain possible deviations.