MIT Dept. of Mathematics Benjamin Seibold

18.086 spring 2008 Exercise Sheet 4

Out Mon 03/31/08

Due Fri 04/18/08

Exercise 9

Consider the domain $\Omega \subset \mathbb{R}^2$, as given in the figure below. The boundary Γ consists of Dirichlet boundaries Γ_D (thin lines) and Neumann boundaries Γ_N (fat lines). Using finite differences, we would like to approximate the Poisson problem

		2.5	[;	 	1
$\int -\Delta u = 1$	in Ω	2			 	
$\begin{cases} u = f\\ \frac{\partial u}{\partial n} = \frac{\partial f}{\partial n} \end{cases}$	on Γ_D	1.5			 	
	on Γ_N - $xy^3 - \frac{1}{2}x^2$.	1			 	Ì
		0.5				ļ
where $f(x, y) = x^3 y$		-0.5			 	
				U	2	3

Write a Matlab function that, for any given resolution parameter, yields a linear system that discretizes the above Poisson problem.

Then choose a small resolution, a medium resolution and a high resolution, and (try to) solve the linear systems by

- 1. elimination with reordering
- 2. Jacobi iteration
- 3. a simple multigrid method (V-cycle)
- 4. conjugate gradients

Compare the approaches with respect to accuracy and run times. Up to which resolution can you go with the best method?

Remarks:

- Construct the matrix for interior points only, using lexicographic ordering. View Ω either as a composition or a subtraction of two rectangles. Rectangular geometries can be discretized using Matlab's kron.
- For elimination, use Matlab functions. The other three methods have to be implemented by hand (codes from the CSE web page can be used).
- Be aware of the difference between discretization error and errors in solving the

linear system approximately.

- For a small test problem $A\vec{u} = \vec{b}$, the accuracy of a linear solver is best measured by the norm of the error $\|\vec{u}_{approx} - \vec{u}_{correct}\|$. However, for high resolutions, this error may not be accessible. In those cases, the residual $\|A\vec{u}_{approx} - \vec{b}\|$ can be used.
- The high resolution may cause some solution methods to fail. The medium resolution shall be chosen, so that all considered solution methods succeed.