MIT Dept. of Mathematics Benjamin Seibold

18.086 spring 2008

Exercise Sheet 1

Out Wed 02/06/08

Due Fri 02/22/08

Exercise 1

The telegraph equation $u_{tt} + 2du_t = u_{xx}$ describes the evolution of a signal in an electrical transmission line (en.wikipedia.org/wiki/Telegraph_equation). Consider $x \in [-\pi, \pi)$ with periodic boundary conditions. Find the solution by a Fourier approach. Show that the waves e^{ikx} travel with frequency dependent velocities, while being damped with time.

Exercise 2

Write a program that approximates the solution of the beam equation $u_t = -u_{xxxx}$ on $x \in [-1,1]$ by finite differences, given the boundary conditions $u(-1,t) = u(1,t) = u_x(-1,t) = u_x(1,t) = 0$. Plot the numerical solution u(x,t) at times $t_1 = 0.03$ and $t_2 = 0.08$, when starting with initial condition $u(x,0) = (1-x^2)^2$. You can use the code mit18086_fd_heateqn.m on the course web page as a guideline.

Exercise 3

Use finite differences to solve Airy's equation $u_t = u_{xxx}$ on $x \in [-1, 1)$, using periodic boundary conditions, and starting with initial condition $u(x, 0) = \cos(\pi x) + \cos(2\pi x)$.

- 1. Approximate u_{xxx} by a four point stencil. Investigate the four possible placements of the stencil (completely upwind, two points upwind-one point downwind, one point upwind-two points downwind, completely downwind) for stability, using von Neumann stability analysis. Implement the stable approximations in a Matlab program. Plot the numerical solution at times $t_1 = 0.01$ and $t_2 = 0.03$, using a reasonable grid resolution.
- 2. Derive a centered symmetric five point stencil that approximates u_{xxx} . Show that it leads to an unstable method. Recover stability by adding a numerical diffusion term cu_{xx} , or by adding a numerical super-diffusion term $-cu_{xxxx}$ (whatever you think works better). Use the Lax-Friedrichs approach, as seen in the lecture for $u_t = u_x$, as a guideline. Show that the new method is stable, given the constant c is chosen large enough. Implement your method (you can use your code from the previous part) and plot the function at times $t_1 = 0.01$ and $t_2 = 0.03$, for a suitably chosen value of c.