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1. INTRODUCTION 
 
 Blood analytes provide valuable information for the diagnosis of many fatal 
diseases and abnormal health conditions. Development of painless and convenient 
methods for measurement of such analytes has received considerable attention. 
Glucose detection1, in particular, has been studied extensively over the last couple of 
decades as it has widespread implications in the control and management of 
diabetes. As diabetes has no known cure, tight control of glucose levels is critical for 
the prevention of such complications2. Given the necessity for regular monitoring of 
blood glucose, development of non-invasive glucose detection devices is essential to 
improve the quality of life of diabetic patients. 
 Our laboratory has pioneered the development of a non-invasive glucose sensor 
based on the principles of NIR (near-infrared) Raman spectroscopy3,4. NIR Raman 
Spectroscopy combines the substantial penetration depth of NIR light with the 
excellent chemical specificity of Raman spectroscopy. Additionally, it enables the 
simultaneous determination of multiple blood analytes. The underlying principle of 
this technology is that the backscattered Raman photons, obtained by focusing a 
monochromatic source of light on biological tissue, have characteristic signatures of 
the analytes present in the tissue. The analytes of interest could be cholesterol, fats, 
proteins and glucose among a host of others. NIR Raman spectroscopy thus provides 
an excellent tool to meet the challenges involved in not only monitoring glucose 
levels but also diagnosing various pathophysiological conditions, such as cancer and 
atherosclerotic plaque.  
 A number of major technical challenges, however, impede the development of a 
viable NIR Raman spectroscopic glucose sensor. Significant among these is the lack 
of robust and accurate information extraction algorithms, which can be applied to the 
spectra acquired in vivo. The poor signal to noise ratio of the Raman features makes a 
difficult task even more so. Further more, while the ability of Raman spectroscopy to 
detect multiple analytes simultaneously is a tremendous advantage, the extraction of 
analytical information about each of the constituents is not trivial – as in practice, 
most of these analytes tend to give overlapping features which do not readily lend 
themselves to quantitative predictions.  
 In order to determine the concentration of the various analytes in a complex 
chemical system, multivariate calibration techniques are usually employed. 
Multivariate calibration algorithms, which can be utilized in a wide range of possible 
scenarios in terms of knowledge of the system under consideration, take the full-range 
spectrum into account5. This is critical as the complex spectra that are acquired in vivo 
cannot provide useful information if only a limited number of wavelengths are 
selected for analysis.  
 The existing set of calibration algorithms can be broadly classified into explicit 
and implicit schemes. The explicit calibration procedures provide highly accurate 
models, but require complete knowledge of the constituents of the system and their 
corresponding (Raman) spectra. This limitation renders it of little value in most real 
life biomedical applications, where delineating the system constituents is a major task 
in itself. Implicit calibration, on the other hand, does not require knowledge of the 
constituent spectra, and can be used in applications where concentration information 
about the analyte of interest is known (or can be determined) in a set of reference 
samples. These calibration methods, however, are unable to distinguish between 
legitimate correlations between spectra and concentrations and spurious correlations, 



such as that obtained by system drift and high degree of (unrelated) covariance 
between constituents. Nevertheless, these techniques have gained widespread 
acceptability and function as the gold standard of the day.  
 To alleviate the problems associated with the implicit calibration techniques, our 
laboratory has recently developed two hybrid calibration schemes, namely hybrid 
linear analysis (HLA) and constrained regularization (CR)6,7. CR, which provides 
more flexibility in the incorporation of the prior information than HLA, has been 
shown to significantly outperform the implicit calibration techniques in certain studies, 
where a reasonably high degree of correlation between at least two constituents of the 
samples is intentionally maintained (called correlated samples herein).  
 In this study, our aim is to investigate the applicability of CR in more general 
situations, where sample constituents are uncorrelated (termed as uncorrelated 
samples). This would more closely mimic the prevalent situation in any glucose 
clamping or point of care clinical validation study. In this context, the concept of 
confidence maximization has been introduced. Confidence maximization is defined 
here as the weighted selection of samples and wavelengths in the calibration 
procedure, where larger weights are assigned to those samples and wavelengths that 
have greater probability of providing reliable and accurate constituent-specific 
information.  
 In this article, we review the basic principles of the various multivariate 
calibration schemes that are pertinent to the introduction of the constrained 
regularization method. The theory of CR is then extended to include the formalism of 
confidence maximization. Next, an experimental study is presented to investigate the 
relative advantages in the application of CR over existing implicit methods for 
uncorrelated samples. Finally, we present results showing the substantial reduction in 
the prediction error that can be obtained by incorporating confidence maximization 
principles into the current CR formalism, especially for uncorrelated samples. 

 
2. THEORY 

 
 Establishment of relationships between measurements made on a system and the 
underlying state of the system is a key component of any experimental science. In 
chemistry, this idea has developed into a whole field of study, known as 
chemometrics. Chemometric analysis and interpretation of instrumental data utilizes 
well-established mathematical and statistical methods, such as design of experiments, 
calibration and pattern recognition, to name a few.  
 In spectroscopy, the primary application of chemometrics is in calibration, and 
normally involves using one type of measurement to predict the value of an 
underlying property or parameter. The traditional method of calibration was 
univariate calibration, which involved calibration of a single variable (e.g. 
spectroscopic intensity at a single wavelength) to another variable (e.g. concentration). 
However, univariate calibration proves to be wholly inadequate for analyzing 
complex chemical systems where the spectrum of each constituent contributes to the 
overall spectra of the sample. This motivated the use of multivariate calibration, 
where instead of using a single variable, several variables (e.g. spectroscopic 
intensities at 100 wavelengths) are calibrated to one or more variables. These methods 
provide an improvement in the estimate of the underlying parameter or property due 
to the effect of averaging (of the noise and errors). Although extension from a 



univariate to a multivariate scheme might seem like a natural extension of the space in 
which the formalism is defined, a new class of techniques is actually required to deal 
efficiently with the problem.   
 It is pertinent to note, however, that irrespective of the specific method that is 
being used to tackle the problem, the basic procedure remains the same and can be 
stated in the following manner (Fig. 1). From a reference mixture of compounds of 
known concentrations (typically called a calibration or training set), one seeks to 
establish a relationship between these known concentrations and the measured spectra. 
Once this model is established, it can be used, in conjunction with the acquired 
spectra, to predict the unknown concentrations of the same compounds in future 
samples (also called the prediction or test samples/set). Given this framework, it is not 
surprising that for any calibration procedure to be effective in prospective prediction, 
the range of samples used to develop the calibration set must be sufficiently 
representative of all future samples that may have to be analyzed by this model.  
 

 
 

Fig. 1:  Basic outline of a multivariate calibration algorithm in our experimental 
framework. 

 
2.1. Multivariate Calibration  

 
 Multivariate calibration is a powerful analytical technique for extracting analyte 
concentrations in complex chemical systems that exhibit linear response. The “linear 
response” prerequisite appears as multivariate analysis employs fundamental linear 
algebra techniques.  In spectroscopy, it has been shown linear additivity works well 
and this is especially true in analytical chemistry calibration8. 
 The framework for calibration described in the above paragraphs and shown in 
Fig. 1 can be reduced to set of linear equations as represented in matrix form below:  
 Sj×λ = Cj×pPp×λ + Ej×λ        [1] 
 where S is the matrix of acquired spectra from the sample set,  
       C is the concentration matrix of the sample set,  
            P is the pure component spectra of the constituents in the sample and 
       E is the error matrix associated with the spectral block,  
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       j, λ, p are the number of samples, wavelengths and constituents respectively. 
(In this article, all matrices are denoted by uppercase boldface type, vectors by 
lowercase boldface type and scalars by lowercase letters.) 
 Eqn (1) is just a statement of the linear combination assumption, where the weight 
of each constituent is equal to its concentration in the specific sample. The 
representation of the calibration model in the form of Eqn (1) is called the classical 
calibration model, where the spectra are related to the concentrations and not vice 
versa. This form has the advantage of a direct physical interpretation but has two 
important drawbacks. The first difficulty is that our goal is to be able to predict 
concentrations from the spectra and not the other way around, as represented in Eqn. 
(1).  Secondly, and more importantly, the classical calibration model assumes that all 
the errors are in the spectra block. However, it is recognized in the scientific 
community that the greatest source of error is generally in sample preparation such as 
dilution, weighting and extraction, rather than instrumental reproducibility, so the 
measurement of a concentration is likely to be less certain than the measurement of 
spectral intensity. The inverse calibration model addresses these problems (Eqn. (2)). 
This is specifically more appropriate for implicit calibration models where only the 
analyte of interest is considered (rather than all the constituents present in the sample) 
and is written here as such:  
 cj×1 = Sj×λ b λ ×1 + e j×1        [2] 
 where b is the regression vector and 
      e is the vector of errors associated with the concentration measurements.  
 As the b-vector correlates the acquired spectra to the concentrations of the analyte 
of interest, it is expected that this vector will contain features of the pure spectrum of 
the analyte of interest. However, due to the presence of spectral interferents, it will 
not be exactly the same as the pure spectrum.  
 It is to be noted that despite the problems associated with the classical model, it is 
frequently used due to its physically intuitive nature. We will come across both the 
models in the following sections as we review the various multivariate calibration 
strategies.  

 
2.1.1. Explicit Calibration  

 
 The explicit calibration techniques require that all pure component spectra must 
either be known or pre-calculated before the determination of the concentrations of 
the constituents in the samples is undertaken. The whole class of techniques revolves 
around multiple linear regression (MLR) and can be thought of as a natural extension 
to univariate linear regression.  
 If the spectra of all pure components are known (if all the rows of the P matrix can 
be populated), then ordinary least squares (OLS) is usually applied. From the classical 
calibration model of Eqn (1), one can then obtain a least squares solution for the 
concentrations of the constituents in the samples in the following manner:  
 CLS  =  SPT(PPT)-1        [3] 
 In fact, one can observe that this solution does not really have a calibration step in 
contradiction to the general calibration procedure laid out earlier. This solution exists 
for λ≥p – otherwise PPT is singular. In almost all applications, however, the number 
of wavelengths sampled (~1000) is greater than the number of constituents in the 
sample (~10) and consequently, OLS can be applied whenever the spectra of a unit 
concentration of the pure constituents (basis spectra) are known.  



 To demonstrate the use of this methodology, an experiment was performed with 
two tissue mimicking phantoms where each of the constituents was well characterized 
spectrally. After the OLS inversion was performed to obtain the concentrations, the 
least squares fits to the actual spectra were calculated using the aforementioned 
concentrations. This is shown in Fig. 2. The x and y-axis represent the intensity 
(photon count) and the Raman shift (cm-1) respectively. It can be observed that the 
least squares fit matches very closely to the actual spectra observed – showing that the 
noise in the spectral measurements was minimal.  
 

 
 

Fig. 2: Application of OLS to tissue mimicking phantoms created in vitro 
 
 However, the biggest disadvantage with this method is that it is very sensitive to 
any errors in the measurement of the basis spectra. Moreover, instrumental 
performance may vary from day to day so that the pure spectra measured on Day 1 
may be different – sometimes substantially so – than the pure spectra measured on 
Day 2. In order to overcome these two issues, one can measure spectra of the mixtures 
in known concentrations and use these as a calibration set to obtain the basis spectra 
matrix, P. This is commonly known as the classical least squares (CLS) technique.  
 PLS  =  (CTC)-1 CTS       [4]  
 This exists only when j≥p, which again is true for most applications as the number 
of samples in the calibration set (~50) will exceed the number of pure components in 
each sample. The calculated PLS from Eqn (4) can be used in place of P, in Eqn (3), to 
determine the concentrations of the constituents in unknown samples. In principle, the 
CLS strategy can be thought of as a derivative of OLS except that in the former the 
concentrations of all the constituents are known (in the calibration set) and in the 
latter the pure spectra of the constituents are likewise given.  
 Despite the simplicity of the above approaches, MLR is rarely used in biomedical 
studies, as briefly mentioned in Sec-1. This is due to the obvious limitation of having 
to know the concentrations of all significant compounds in the calibration set or the 
pure spectra of all the compounds. For example, if we have information on the 
concentrations of only m out of n constituents in a calibration set (where n>m) then 
the m predicted spectra will contain features of the spectra of the remaining n-m 
components, distributed among the m known components, and the concentration 
estimates will contain large and fairly unpredictable errors.  
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2.1.2. Implicit Calibration  
  
 The lack of complete knowledge of basis spectra motivates the use of implicit 
calibration strategies in a large number of analytical chemistry applications including 
almost all biomedical and clinical cases. The inverse calibration model of Eqn (2) is 
predominantly used as the fundamental idea is to obtain a regression vector, given the 
spectra of the mixture samples and the concentrations of only the analyte of interest in 
the calibration set. In other words, one would like to obtain the least squares solution 
for the b-vector by using the following formula:  
 b = (STS)-1STc        [5] 
 Once the b-vector is obtained it can be used in conjunction with the spectrum of a 
future sample to predict the concentration of the analyte of interest in that sample 
using Eqn. (6).  
 cun = sun.b         [6] 
 The problem is that the inversion of Eqn. (5) can take place only for j≥λ, i.e. the 
number of samples must be larger than the number of wavelengths for STS to be 
invertible. As this is unrealistic in most situations, one must figure out an optimal way 
to compress the spectral data into fewer data points. 
 Let us assume that S can be expressed as a linear combination of base spectra, Q, 
which are not necessarily the basis spectra of the constituents of the system. Each 
column of Q represents a base spectrum. To write this in a mathematical form, we 
include weightings of each base spectrum for each sample in the form of the score 
matrix, T. 
 S = TQT         [7] 
 The compression step can now be thought of as the transformation from Sj×λ to 
Tj×p such that the inversion step in Eqn (4) becomes straightforward. This is 
performed by projecting the original λ variables onto a new set of p axes, W. Each 
column of W forms one of the projection axes. The transformation can be written as:  
 Tj×p = Sj×λ Wp×λ        [8] 
 The rest of the analysis can then take place in the score-space than in the 
spectrum-space. Since linearity still holds, the concentrations can be predicted using 
the following equation:  
 c = T v         [9] 
 where v is the regression vector in the score-space.  
 A least squares solution for v can now be obtained as TTT has a well-defined 
inverse as j≥p. Using the regression vector with the score of the future sample, one 
can obtain the concentration of the constituent under consideration in the future 
sample.  
 cun = tun v = sunW(TTT)-1 TTc       [10] 
 While all implicit calibration methods use this formalism, they differ in the central 
idea of selection of W, i.e. the optimal way of data compression from λ to p variables. 
Without going into the details of any of them, we will visit the key concepts of two 
such widely used strategies, namely principal component regression (PCR) and partial 
least squares (PLS). These two methods surpass the capability of the direct method 
(inverse least squares (ILS)), where only p wavelengths are chosen to compress Sj×λ to 
Tj×p or all the wavelengths are ‘binned’ to p variables. Clearly, this reduces the 
effectiveness of the multivariate approach itself and yet does not guarantee that the 
transformed matrices are robustly invertible.  



 In PCR, principal component analysis (PCA) of the spectra is first undertaken 
followed by the regression step. For the set of spectra in the calibration set, one 
determines the set of p axes along which the spectral intensity variances are 
maximized. In other words, these axes (also called the principal components) explain 
most of the variation in the data. Not unexpectedly, the PCs are the eigenvectors of 
STS matrix. The critical step here is to select the number of significant principal 
components, which should ideally correlate (or match) with the number of 
constituents in the sample. However, due to the presence of noise in the system it 
could vary from this value. Nevertheless, one must have certain a priori knowledge to 
make a decision of the number of significant components that should be used for 
building the calibration algorithm. To determine how many principal components are 
significant, one can apply a variety of methods, which all look towards optimizing the 
calibration model. For example, one could look for the p largest eigenvalues and 
select the corresponding eigenvectors (principal components). Once the PCs are 
chosen, the regression step (Eqn. (9)) can be employed to obtain the regression vector. 
However, due to this two-step approach, it minimizes the residual in spectrum fitting 
only without considering the variance in the concentration data of the calibration set. 
Stating it in another way, PCR assumes that all the errors are in the spectral block.  
 In contrast to PCR, PLS assumes that the errors in spectral and concentration 
block are of equal significance. This is a more reasonable assumption, given that the 
spectra in modern day labs are indeed more reproducible and accurate than 
concentration measurements. The formalism dictates that the residual in concentration 
fitting is minimized. In other words, instead of determining the axes along which the 
variance of the spectral intensity is maximized, we now look for the variables (here 
called the loading vectors) along which covariance between the spectral and the 
concentration blocks is maximized. Like PCR, however, PLS also forces the user to 
select the number of significant loading vectors based on a priori information or 
model validation strategies. Inclusion of less than ideal number of loading vectors 
introduces undesirable averaging of the spectral features and the inclusion of too 
many loading vectors makes it liable to ‘over-fitting’. Over-fit models produce 
excellent results on the calibration set but, due to the incorporation of noise in the 
calibration set data, produce poor results on any arbitrary prediction set.  
 Given equal information regarding the number of significant PC/loading vectors, 
PLS outperforms PCR in all cases. In cases where the noise in both spectral and 
concentration data is negligible the two methods provide similar performances. As a 
consequence, PLS is currently the preferred method for calibration for 
chemometricians all over the world and forms the gold standard in this field of 
application.  
 One practical application of the PLS technique is shown in Fig. 3. A glucose 
clamping study was carried out on a dog for 3 hours and Raman spectra were 
collected over the duration. Every 10 minutes, a small volume of the dog’s blood was 
withdrawn to test for the blood glucose level. Subsequently, the entire spectra and 
concentration data was divided into calibration and prediction sets. The regression 
vector was developed from the calibration set using the PLS technique and then 
applied on the prediction set.  



 
Fig. 3:  (left) Comparison of b-vector (regression vector) and glucose spectrum;  

 (right) Predicted and reference concentrations of blood glucose over three hour 
period 

 
 It is clear from Fig. 3 that the regression vector contains features from the Raman 
spectrum of pure glucose especially in the ranges highlighted. The other features are 
from spectral interferents. The prediction of glucose concentration closely resembles 
the actual reference concentration in the trends followed during the clamping study. 
At hypoglycemic levels (below 6 mM), the absolute errors in prediction are pretty 
significant. The prediction accuracy is reasonable in the hyperglycemic levels, as 
expected because at higher concentration levels, the role of spectral interferents will 
decrease appreciably.  
 Despite the reasonable prediction performance shown in Fig. 3, PLS suffers from 
some shortcomings, the most prominent of which is that it can be heavily influenced 
by spurious correlations arising from system drift and (unintentional) covariance 
among constituent concentrations in the calibration set9. Explicit calibration 
techniques, on the other hand, do not have such deleterious effects arising from 
system correlations due to the prior information that is fed into the model. This 
provides a strong motivation that if one could incorporate prior information into an 
implicit calibration technique, one could possibly get rid of the spurious correlations 
that significantly mar the prediction capability of the model. Hybrid calibration 
methods were developed to bridge the gap between robust (implicit) and accurate 
(explicit) calibration strategies.  
 
2.1.3. Hybrid Calibration 

 
 Hybrid calibration techniques try to incorporate prior information that is available 
in the specific application area into the implicit calibration strategies. The aim is to 
enhance the accuracy of the prediction and minimize the effect of spurious correlation 
of an implicit calibration scheme. Hybrid schemes have been investigated by various 
research groups and several references can be found in the literature6,10. Hybrid linear 
analysis (HLA), for example, uses the pure spectrum of the analyte of interest to build 
the model. As the pure spectrum of glucose can be easily measured using a reference 
sample at unit concentration, the idea of incorporating the spectrum of analyte of 
interest is sound for our application. In HLA, the central idea is to remove from each 
acquired spectra the contribution due to the analyte of interest by subtracting from the 
former the product of the concentration of the analyte (in each corresponding sample) 



and its pure spectrum. PCA is, then, performed on the subtracted spectra to obtain the 
principal components of the background spectra (spectra with the features of the 
analyte of interest removed). To this set of PCs is added the spectrum of the analyte of 
interest and this complete set is used like the matrix of pure spectra of the chemical 
constituents, as in OLS. However, due to the reliance on direct spectral subtraction, 
the intensity and profile of the pure spectrum is of extreme importance in HLA. In 
other words, any inaccuracy in the pure spectrum can set off major errors propagating 
through the algorithm. This causes instability in the system and reduces the robustness 
of the algorithm.  
 To overcome this lack of robustness in HLA, our laboratory has recently 
developed the novel methodology of constrained regularization (CR)7. Since the least 
squares problem to obtain the regression vector from the inverse calibration model 
(Eqn (5)) cannot be solved unless the number of samples is greater than or equal to 
the number of wavelengths sampled, we regularize the problem such that the 
inversion operation can be successfully undertaken. In other words, Eqn (5) represents 
an underdetermined problem, with greater number of unknowns (λ) than there are 
equations (j) – thus, the problem needs to be regularized for the matrix S, which does 
not have full rank, can be inverted. Regularization pushes the eigenvalues of the STS 
matrix away from zero – thereby making it invertible. This new regularized problem 
statement can be written as:  
           [11] 
 
where Ф is the function that needs to be minimized and Λ is the regularization 
parameter.  
 It is pertinent to note that the addition of the regularization term has turned the 
linear least squares problem (which is the minimization of the first term in the RHS of 
Eqn. (11)) to a two squares minimization problem. However, the introduction of the 
second term in the current form implies we want to minimize the norm of the 
regression vector, which is not completely true. We would like to minimize not the 
norm of the regression vector but the norm of the regression vector minus the pure 
glucose spectrum. This redefinition of the constraint ensures that the regression vector 
should tend towards the glucose spectrum. The full CR problem statement can now be 
expressed as:  
           [12] 

 
where b0 gives the spectral constraint for the regression vector.  
 While it has been shown that CR significantly outperforms PLS for correlated 
samples7, the comparison of performance metrics for these two algorithms in more 
general situations, where sample constituents are uncorrelated, has not been 
investigated. It is expected that the performance metrics of the two algorithms will not 
be very different for the uncorrelated case. This motivates the application of sample 
and wavelength selection concepts to CR.  
 We propose to develop confidence maximization principles which can be used as 
a natural extension to the existing theory of CR in further enhancing prediction 
accuracy. Confidence maximization, as defined earlier, represents the assignment of 
weights to samples and wavelengths in the calibration procedure. The amount of 
weight assigned, to a sample or wavelength, is proportional to its probability of 
providing reliable and accurate constituent-specific information.  
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 This step is crucial for the improvement of CR, in particular, because the 
application of the b0 spectral constraint must be weighted to favor those wavelengths 
where glucose shows significant Raman features. At other wavelengths, the 
contributions from noise might be adversely affecting rather than enhancing the 
capability of multivariate calibration. In essence, therefore, one can think of the 
wavelength selection principle as incorporation of prior information.  
 Sample selection is based on the type of study being performed. If an in vitro 
phantom study is performed, more weight is given to those samples in which the 
glucose concentration is higher. This is in line with the argument provided for the 
PLS results in the glucose clamping study on the dog, i.e. at higher concentrations of 
the analyte of interest the role of spectral interferents reduces considerably. Moreover, 
at lower concentrations, the noise in the signal might have a more adverse role. In the 
case of an in vivo glucose clamp study, larger weights are assigned to the 
measurements made when the glucose is stable at a particular concentration rather 
than when it is rising or falling rapidly. It is evident that measurements made at these 
stable levels are much more reliable and reproducible than those made between two 
stable levels, where complications arising from the lag time between the interstitial 
fluid glucose and plasma glucose concentrations become significant.  
 In order to incorporate confidence maximization into the problem statement of 
Eqn (11), we need to introduce wavelength (Wλ) and sample (WS) weighting matrices. 
The assignment of suitable elements to populate these two matrices is based on the 
physical criteria stated above. One such implementation is shown in Sec-4, where the 
analysis of the in vitro tissue phantom study is undertaken.  
 The new problem statement for obtaining the regression vector using constrained 
regularization with confidence maximization is given by:  
           [13] 
 
where the first and second terms are evaluated with respect to the weighting matrices 
WS and Wλ respectively. This can be re-written in the following manner:  
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Eqn. (14), in turn, yields the following expression for the ‘best’ estimate of bΛ:  
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Eqn. (15) gives the final expression for the least squares regularized estimate of the 
regression vector subject to confidence maximization matrices. The estimated 
regression vector can now be used in conjunction with the spectra of the future 
samples to predict the unknown concentrations of the analyte of interest, using Eqn. 
(6).  
 
3. MATERIALS AND METHODS 
 
 An 830-nm external cavity diode laser was used as the Raman excitation source 
for our experimental studies. The laser beam was passed through a laser line filter and 
focused onto the sample. A photodiode was placed along the excitation path to 
monitor the intensity variations of the laser source such that the variations in source 
intensity can be correctly accounted for. The back-scattered light was collected and 
directed by the paraboloidal mirror towards a holographic notch filter to reduce the 
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Rayleigh peak intensity.  The light exiting the notch filter was input to f/1.4 
spectrometer. A liquid nitrogen cooled CCD detector, having high quantum efficiency 
and low shot noise, was used to capture the spectra. All the optical elements were NIR 
anti-reflection coated to enhance the throughput of the system.  
 An in vitro tissue phantom study was undertaken to compare and contrast the 
prediction accuracy of CR and PLS. Although a previous study had shown the 
effectiveness of CR in correlated samples, no such study for uncorrelated samples in 
turbid media has been reported. It has to be emphasized that uncorrelated samples in 
turbid media provide the most realistic test bed for in vivo applications. The biggest 
motivation, however, was to determine the reduction of prediction error, if any, that 
could be expected if CR was extended to include confidence maximization principles.  
 The tissue phantoms used in this study were prepared using a mixture of glucose, 
creatinine, intralipid, and ink in water. This set of constituents enables the phantom to 
have similar scattering and absorption properties (turbidity) as human tissue. 50 such 
tissue phantoms were prepared with completely randomized concentration profiles, i.e. 
there was little or no correlation between the concentrations of any two constituents 
across all the phantoms. However, as the tissue phantoms were artificially created, all 
the concentrations were known a priori, so any further independent measurement of 
concentration was not necessary.  
 The data from the 50 tissue phantoms were separated into calibration (36 samples) 
and prediction (14 samples) sets. Each method - PLS, CR, CR with sample selection, 
and CR with sample and wavelength selection – was applied first on the calibration 
set to create a calibration algorithm. To this end, the acquired spectra (after having 
been corrected for the presence of any cosmic rays and smoothed using a Savitzky-
Golay algorithm11) were used in conjunction with the known concentrations of 
glucose in the calibration set. Since the number of constituents in each sample was 
known for this study, no optimization was performed on the calibration set to 
determine the number of loading vectors in PLS. After the calibration algorithm was 
established (the b-vector was obtained), it was used to predict the concentrations of 
glucose in the future samples in the prediction set. The predicted concentration was 
compared to the actual concentration of glucose in the samples and a prediction error 
– root mean square error of prediction (RMSEP) – was calculated using Eqn. (16).  
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where n is the number of samples in the prediction set.  
 The splitting into calibration and prediction sets were iterated 500 times such that 
the mean RMSEP calculated gave an accurate estimate of the prediction error that can 
be expected using each calibration strategy.  
 
4. RESULTS 
 
 The spectra acquired from the 50 tissue phantoms are shown in Fig. 4. Clearly, the 
spectra contain not only Raman features of the constituents but also a broad 
fluorescence background, which greatly impedes the detection of analytes using 
Raman spectroscopy. Moreover, although the concentrations of the constituents were 
randomized, one cannot observe with the naked eye distinct differences in 



characteristic features from one spectrum to another. Nevertheless, there does exist, 
on a finer scale, local intensity variations at different Raman shifts because of which 
the multivariate calibration techniques are able to achieve reasonable prediction 
accuracy.  

                    
Fig. 4: Acquired Raman spectra from the 50 tissue phantoms created in vitro. 

 
 The spectra were first pre-processed as detailed in Sec-3. PLS and CR were then 
applied to the datasets (spectra and concentrations) of the phantoms to determine the 
RMSEP values in each case. The results are shown in Fig. 5.  
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Fig. 5:  Box-plot of prediction error for PLS and CR in uncorrelated samples. Values 

were derived from 500 random splittings of 50 samples into 36 calibration and 
14 prediction samples.  
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 It can be observed that there is a reduction in the prediction error when CR is 
applied rather than PLS. This reduction can be calculated to be around 4.65%. 
Although this is a statistically significant reduction, as can be understood by the fact 
that it holds over 500 iterations, the value pales in comparison to that achieved when 
both these techniques were applied under similar conditions to correlated samples7. 
For the sake of comparison, Fig. 6 reproduces the results stated in the aforementioned 
article, where the glucose and creatinine concentrations in 50 samples had a R2 value 
of 0.48. When correlated samples were samples, the reduction in error was found to 
be more than 20%.  
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Fig. 6:  Plot of the prediction errors of PLS and CR in correlated samples (adapted 

from Ref [7]) 
 

 As stated earlier, PLS performs much better when the samples are uncorrelated 
and thus in a real life situation, where constituents are not likely to have a significant 
degree of correlation between themselves and are expected to be measured in a turbid 
medium, the two methods might perform equivalently. The major advantage of CR in 
such a situation is that there is no need to designate the number of significant 
components required to create the calibration model. Although this might seem like a 
minor issue at first glance, the validation of the calibration model created by PLS and 
particularly of the number of components required to create the best model requires 
the investment of a huge amount of effort and time. Moreover, there is no one best 
way of validation of the number of components with various researchers choosing 
between cross-validation, bootstrap and autoprediction to make their cases.  
 The results of Fig. 5 and 6 provide us with an excellent motivation to incorporate 
confidence maximization principles as one would like to work with CR (because of 
the reasons stated above) but with improved accuracy. To test the effectiveness of the 
sample and wavelength selection approaches, both CR with sample selection and CR 
with sample and wavelength selection were applied on the same datasets as used 
before (the same set of 500 splittings into 36 calibration and 14 prediction samples).  
 For appropriate sample selection, the assigned weight of each sample in the 
calibration set was set equal to the glucose concentration in that sample. The rationale 
behind this is that at higher levels of glucose concentration, the role of spectral 
interferents and noise is significantly more limited. Wavelength selection was 
performed by choosing those wavelength ranges (Raman shift ranges, to be precise) 
where glucose shows important features, namely 400-550 cm-1 and 800-1480 cm-1. 
These wavelength ranges were given unit weight while the other wavelengths were 



assigned zero weights. Evidently, these weights could be assigned more 
systematically but the lack of a suitable validation algorithm for these assignments 
remains the bottleneck in the development of a more systematic weight assignment 
scheme. 
  The results of application of CR with sample selection and CR with sample and 
wavelength selection is shown in Fig. 7, alongside the previous results obtained for 
PLS and CR. It can be observed that both sample selection and wavelength selection 
by themselves provide ample benefits in regard to the reduction in the value of 
RMSEP. In particular, CR with sample and wavelength selection is shown to give an 
astounding 44% reduction in SEP value from that given by the existing CR 
algorithm.  
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Fig. 7:  Plot of the prediction errors for PLS, CR, CR with sample selection and CR 
with sample and wavelength selection.  

  
 CR with confidence maximization, thus retains the robustness and flexibility of 
CR, but tremendously improves its accuracy. Importantly, no additional knowledge 
beyond that which is ordinarily available for all in vitro and in vivo studies is used. As 
in CR, there is no need to specify the precise number of significant components which 
should be used in model building. The significant enhancement of prediction 
capability even in uncorrelated samples means that CR with confidence maximization 
can be used for all applications, irrespective of correlation between constituents and 
presence or absence of turbidity in the medium.  
 
5. CONCLUSION 
 
 In this article, we have introduced confidence maximization as a means of 
significant enhancement of prediction accuracy for the existing constrained 
regularization methodology. Based on the minimization of the weighted two squares 
problem, it retains all the advantages of the original constrained regularization scheme 
by maintaining the robustness associated with the flexibility in the choice of the 
regularization parameter.  



 Our investigations revealed that although CR enjoys a substantial edge in 
prediction accuracy over PLS for samples where certain constituents have a 
reasonable degree of correlation between themselves, the difference is not as 
significant for uncorrelated samples. Both of the confidence maximization approaches, 
namely sample selection and wavelength selection, are shown to provide distinct 
benefits - nearly a factor of two reduction in prediction error is observed.  
 In future work, one would like to develop a set of schemes that can assign optimal 
weights both for sample selection and wavelength selection. This can provide 
tremendous benefits in the processing time necessary for a set of spectra. Furthermore, 
this could be tested across more samples with different constituents to validate the 
basic principles of confidence maximization. Finally, it is necessary to work towards 
an explicit formula for the optimal regularization parameter, which has to be initiated 
by characterizing the noise in the system measurements.  
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