MIT Dept. of Mathematics Benjamin Seibold

18.086 spring 2007

Exercise Sheet 1

Out Wed 02/07/07 Due Wed 02/21/07

Exercise 1 Consider the function u(x,t) evolving under the initial value problems

(i) $u_t = u_x$, (ii) $u_t = u_{xx}$, (iii) $u_t = u_{xxx}$, (iv) $u_t = u_{xxxx}$

with initial conditions $u(x, 0) = u_0(x)$.

- 1. Consider $x \in [-\pi, \pi)$ with periodic boundary conditions. Use Fourier series to obtain the analytic solution to the four initial value problems (i)–(iv). How smooth do the initial conditions u_0 have to be? Use the Fourier representation to describe the behavior of the solutions (briefly). What would change in all four cases, if the right hand side had a minus sign?
- 2. Write a Matlab program which approximates the solution of $u_t = -u_{xxxx}$ on the domain $(x,t) \in [-1,1] \times [0,0.1]$ by finite differences, given the boundary conditions $u(-1,t) = u(1,t) = u_x(-1,t) = u_x(1,t) = 0$. Plot the function u(x,t) at times $t_1 = 0.05$ and $t_2 = 0.1$, when starting with initial condition $u(x,0) = (1-x^2)^2$. You can use the code solving $u_t = u_{xx}$, given on the course webpage, as a guideline.
- 3. Consider Airy's equation $u_t = u_{xxx}$. Discretize the third space derivative by a four point stencil. Investigate the four possible placements of the stencil (completely upwind, two points upwind-one point downwind, one point upwind-two points downwind, completely downwind) for stability, using von Neumann stability analysis. Implement the stable approximations in a Matlab program, solving Airy's equation on $(x, t) \in [-1, 1] \times [0, 1]$, using appropriate boundary conditions of your choice. (Remark: If you do not use periodic boundary conditions, you have to find out how many conditions to prescribe on each side of the computational interval.) Plot the function at times $t_1 = 0.5$ and $t_2 = 1$.
- 4. Show that using a centered five point stencil to approximate the third derivative in Airy's equation yields an unstable method. Recover stability by a Lax-Friedrichs approach, as seen in the lecture for the one-way wave equation. (Remark: Here one can add cu_{xx} , as for $u_t = u_x$, but one can also add $-cu_{xxxx}$.) Show that the new method is stable. Implement this method (you can use your code from the previous part) and plot the function at times $t_1 = 0.5$ and $t_2 = 1$.