
Chapter 6

Solving Large Systems

6.1 Elimination with Reordering

Finite elements and finite differences produce large linear systems KU = F . The

matrix K is extremely sparse. It has only a small number of nonzero entries in a
typical row. In “physical space” those nonzeros are tightly clustered—they come
from neighboring nodes and meshpoints. But we cannot number N 2 nodes in a plane
in any way that keeps all neighbors close together ! So in 2-dimensional problems,
and even more in 3-dimensional problems, we meet three questions right away:

1. How best to number the nodes

2. How to use the sparseness of K (when nonzeros might be widely separated)

3. Whether to choose direct elimination or an iterative method.

That last point separates this section on elimination (where node order is important)
from later sections on iterative methods (where preconditioning is crucial).

To fix ideas, we will create the n equations KU = F from Laplace’s difference
equation in an interval, a square, and a cube. With N unknowns in each direction,
K has order n = N or N 2 or N3. There are 3 or 5 or 7 nonzeros in a typical row of
the matrix. Second differences in 1D, 2D, and 3D are shown in Figure 6.1.

Along an inside row of the matrix, the entries add to zero. In two dimensions
this is 4− 1− 1 − 1 − 1 = 0. This “zero sum” remains true for finite elements (the
element shapes decide the exact numbers). It reflects the fact that u = 1 solves
Laplace’s equation and U = ones(n, 1) has differences equal to zero. The constant
vector solves KU = 0 except near the boundaries. When a neighbor is a boundary
point, its known value moves onto the right side of KU = F . Then that row of K is
not zero sum. Otherwise K would be singular, if K ∗ ones(n, 1) = zeros(n, 1).

Using block matrix notation, we can create the 2D matrix K2D from the familiar
N by N second difference matrix K. We number the nodes of the square a row at
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Figure 6.1: 3, 5, 7-point difference molecules for −uxx,−uxx − uyy,−uxx − uyy − uzz.

a time (this “natural numbering” is not necessarily best). Then the −1’s for the
neighbors above and below are N positions away from the main diagonal of K2D.

The 2D matrix in Figure 6.2a is block tridiagonal with tridiagonal blocks:

K =









2 −1
−1 2 −1

· · ·

−1 2









K2D =









K + 2I −I
−I K + 2I −I

· · ·

−I K + 2I









(1)

Size N

Time N

Elimination in this order: Size n = N2

Bandwidth w = N , Space nw = N3, Time nw2 = N4

The matrix K2D has 4’s down the main diagonal. Its bandwidth w = N is the
distance from the diagonal to the nonzeros in −I. Many of the spaces in between
are filled during elimination! Then the storage space required for the factors in
K2D = LU is of order nw = N 3. The time is proportional to nw2 = N4, when n
rows each contain w nonzeros, and w nonzeros below the pivot require elimination.

Again, the operation count grows as nw2. Each elimination step uses a row of
length w. There can be nw nonzeros to eliminate below the diagonal. If some entries
stay zero inside the band, elimination could be faster than nw2—and this is our goal.

Those counts are not impossibly large in many practical 2D problems (and we
show how they can be reduced). The horrifying N 7 count will come for elimination
on K3D. Suppose the 3D cubic grid is numbered a plane at a time. In each plane
we see a 2D square, and K3D has blocks of order N 2 from those squares. With each
square numbered as above, the blocks come from K2D and I = I2D:

K3D =









K2D + 2I −I

−I K2D + 2I −I

· · ·

−I K2D + 2I









3D Size n = N3

Bandwidth w = N2

Elimination space N 5

Elimination time N 7

The main diagonal of K3D contains 6’s, and “inside rows” have six −1’s. Next to a
face or edge or corner of the cube, we lose one or two or three of those −1’s.
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From any node to the node above it, we count N 2 nodes. The −I blocks are far
from the main diagonal and the bandwidth is w = N 2. Then nw2 = N7.

Fill-in Let me focus attention immediately on the key problem, when we apply
elimination to sparse matrices. The zeros “inside the band” may fill in with nonze-

ros. Those nonzeros enter the triangular factors of K = LLT (Figure 6.2a). When
multiples of one pivot row are subtracted from other rows, a nonzero in that pivot
row will infect all the others.

Sometimes a matrix has a full row, from an equation like
∑

Uj = 1 (see Figure 6.3).
That full row better come last !

A good way to visualize the nonzero structure (sparsity structure) of K is by a
graph. The rows of K are nodes in the graphs. A nonzero entry Kij produces an
edge between nodes i and j. The graph of K2D is exactly the mesh of unknowns!
Filling in a nonzero adds a new edge (a diagonal in our square graph). Watch how
fill-in happens in elimination:

FILL-IN New nonzero in the matrix / New edge in the graph

Suppose aij is eliminated. A multiple of row j later is subtracted from the row i.
If ajk is nonzero in row j, then anew

ik becomes filled in row i:

Matrix
nonzeros

ajj ajk

aij 0
−→ ajj ajk

0 anew
ik

Graph
edges

j

i

k
−→

j

i k

Fill-in

Kronecker product One good way to create K2D from K and I (N by N) is the
kron(A, B) command. This replaces each number aij by the block aijB. To take
second differences in all columns at the same time, and all rows, use kron twice:

K2D = kron(K, I) + kron(I, K) =





2I −I ·

−I 2I ·

· · ·



 +





K
K

·



 (2)

This sum agrees with (1). Then a 3D box needs K2D and I2D = kron(I, I) in
each plane. This easily adjusts to allow rectangles, with I’s of different sizes. For
a cube, take second differences inside all planes with K2D, plus differences in the
z-direction:

K3D = kron(K2D, I) + kron(I2D, K) has size (N 2)(N) = N3 . (3)

Here K and K2D and K3D of size N and N 2 and N3 are serving as models of

the type of matrices that we meet. But we have to say that there are special ways to
work with these particular matrices. The x, y, z directions are separable. We can use
FFT-type methods in each direction. See Section 6. on Fast Poisson Solvers.
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MATLAB should know that the matrices are sparse ! If we create I = speye(N)
and K comes from spdiags as in Section 1.1, the kron command will preserve the
sparse treatment. Before we describe reordering by minimum degree, allow me to
display spy(K2D) plus fill, and the reordered spy(PK2DP T). The latter will have

much less fill-in. Your eye may not see this so clearly, but the count is convincing !

Figure 6.2: (a) K2D is filled in by elimination. (b) A good reordering of K2D.

Minimum Degree Algorithm

We now describe a useful way to reorder meshpoints and equations in K2DU = F .
The ordering achieves approximate minimum degree at each step—the number of
nonzeros below the pivot is almost minimized. This is essentially the algorithm
used in MATLAB’s command U = K\F , when K has been defined as a sparse matrix.
We list some of the functions from the sparfun directory:

speye (sparse identity I) nnz (number of nonzero entries)
find (find indices of nonzeros) spy (visualize sparsity pattern)
colamd and symamd (approximate minimum degree permutation of K)

You can test and use the minimum degree algorithms without a careful analysis. The
approximations are faster than the exact minimum degree permutations colmmd and
symmmd. The speed (in two dimensions) and the roundoff errors are quite acceptable.

In the Laplace examples, the minimum degree ordering of nodes is irregular com-
pared to “a row at a time.” The final bandwidth is probably not decreased. But
many nonzero entries are postponed as long as possible ! That is the key.

The difference is shown in the arrow matrix of Figure 6.3. Its minimum degree
ordering (one nonzero below each pivot) produces large bandwidth, but no fill-in.
Elimination will only change the last row and column. The triangular factors L and
U have all the same zeros as A, keeping the arrow. The space for storage stays at 3n,
and elimination needs only n divisions and multiplications and subtractions. When
a sparse matrix has a full row, put it last.

best
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Figure 6.3: Minimum degree (arrow matrix) defeats minimum bandwidth.
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The second ordering reduces the bandwidth from 6 to 3. But when row 4 is used
as the pivot row, the entries indicated by F are filled in. That lower quarter of A
becomes full, with n2/8 nonzeros in each factor L and U . You see that the whole
nonzero “profile” of the matrix decides the fill-in, not just the bandwidth.

Here is another example, from the red-black ordering of a square grid. Color
the gridpoints like a checkerboard. Then all four neighbors or a red point are black,
and vice versa. If we number the red points before the black points, the permuted

K2D has diagonal blocks of 4I:

Red-black
permuation

P (K2D) P T =

[

4 Ired −1’s
−1’s 4 Iblack

]

. (4)

This pushes the −1’s and the fill-in into the last N 2/2 rows. Notice how P permutes
the rows (the equations) and P T permutes the columns (the unknowns). Together
they keep 4’s on the main diagonal.

Now the real thing. Minimum degree algorithms choose the (k + 1)st pivot
column, after the first k columns have been eliminated as usual below the diagonal.
The algorithms look at the nonzeros in the lower right matrix of size n− k.

Symmetric case: Choose the remaining meshpoint with the fewest neighbors.

Unsymmetric case: Choose the remaining column with the fewest nonzeros.

The component of U corresponding to that column is renumbered k + 1. So is the
meshpoint in the finite difference grid. Of course elimination in that column will
normally produce new nonzeros in the remaining columns. Some fill-in is unavoidable.
The algorithm keeps track of the new positions of nonzeros, and also the actual
entries. It is the positions that decide the ordering of unknowns (the permutation
of columns). Then the entries in K decide the numbers in L and U .

The degree of a node is the number of connections to other nodes. This is
the number of off-diagonal nonzeros in that column of K. In Figure 6.4 the corner
nodes 1, 3, 4, 6 all begin with degree 2. The side nodes 2 and 5 have degree 3. The

degrees change as elimination proceeds ! Nodes connected to the pivot become
connected to each other—and that entry of the matrix fills in.

You will see how a renumbering of meshpoints preserves the symmetry of K. The
rows and columns are reordered in the same way. Then P KoldP

T = Knew = KT
new.

Example 1 Figure 6.4 shows a small example of the minimal degree ordering, for Laplace’s
5-point scheme. The problem starts with six meshpoints (they would be connected to
boundary points where U is known) and a 6 by 6 matrix. K has two 3 by 3 tridiagonal
blocks from horizontal links, and two 3 by 3 blocks with −I from vertical links.

The first elimination step chooses row 1 as pivot row, because node 1 has minimum
degree 2. (Any degree 2 node could come first, leading to different elimination orders.)
The pivot is P, the other nonzeros in that row are boxed. When row 1 operates on rows 2
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F 0 ∗ ∗

Figure 6.4: Minimum degree nodes 1 and 3 give pivots P. New diagonal edges 2–4
and 2–6 in the graph match the first four entries F that are filled in by elimination.

and 4, it changes six entries below it (left figure). The two fill-in entries marked by F
change to nonzeros. This fill-in of the (2, 4) and (4, 2) entries corresponds to the dashed
line connecting nodes 2 and 4 in the graph.

Elimination continues on the 5 by 5 matrix (and the graph with 5 nodes). Node 2
still has degree 3, so it is not eliminated next. If we break the tie by choosing node 3,
elimination using the new pivot P will fill in the (2, 6) and (6, 2) positions. Node 2

becomes linked to node 6 because they were both linked to the eliminated node 3.

The problem is reduced to 4 by 4, for the unknown U ’s at the remaining nodes 2, 4,
5, 6. Problem asks you to take the next step—choose a minimum degree node and
reduce the system to 3 by 3. Figure 6.5 shows the start of a minimum degree ordering
for a larger grid. Notice how fill-in (16 edges, 32 F’s) increases the degrees.

1 2

34

5

6

7

8

←− 25 meshpoints

1–4: degree 2
5–8: degree 3

17 to go −→
degrees 4 and 5
at this stage

Figure 6.5: Nodes connected to an eliminated node become connected to each other.
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Storing the Nonzero Structure = Sparsity Pattern

A large system KU = F needs a fast and economical storage of the node connections
(the positions i, j of nonzeros in the matrix). The internal list of edges and nonzero
positions will change as elimination proceeds. Normally we don’t see that list.

Here we create the list for N = 4 by [i, j, s] = find(K). This has nnz(K) = 10:

i = 1 2 1 2 3 2 3 4 3 4 j = 1 1 2 2 2 3 3 3 4 4

s = 2 −1 −1 2 −1 −1 2 −1 −1 2

The 10 entries are in s, so the fifth nonzero has i = 3, j = 2, and s = K32 = −1. The
positions i, j of nonzeros in K are in lexicographical order.

You can see that the list j of column indices should be compressed. All we need
are pointers to indicate when a new column appears on the list. In reality j is replaced
by this short list of pointers to the list, including a last pointer to position 11 that
signals the stop:

point = 1 3 5 8 11 can be updated by perm(point)
when columns are reordered.

The sparse backslash command U = K\F uses an approximate minimum degree
algorithm. First it checks the nonzero pattern to see if row and column permuta-
tions P1 and P2 can produce a block triangular form. The reordered system is
P1KP T

2
(P2U) = P1F :

Block triangular matrix P1KP T

2
=









B11 B12 · ·

0 B22 · ·

0 0 · ·

0 0 0 Bmm









.

The reordered unknown P2U and the right-hand side P1F are similarly partitioned
into m blocks. Block back-substitution starts with the smaller problem BmmUm =
Fm. Working upwards, we only deal with the blocks Bii on the diagonal (the smaller
the better). Surprisingly often, a block triangular form is available.

To preserve symmetry we need P1 = P2. In the positive definite case, the Cholesky
command chol is preferred to lu, since useless row exchanges can be safely omitted.
If diag(K) is positive, there is a chance (not a certainty !) of positive definiteness.
Backslash will try chol until it is forced to accept row exchanges.

It is understood that MATLAB is not tuned for high performance. Use it for tests
and experiments and adjustments. Established codes often turn to C++.

Graph Separators

Here is another approach to ordering, different from minimum degree. The whole
graph or mesh is separated into disjoint pieces by a cut. This separator goes through
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a small number of nodes or meshpoints. It is a good idea to number the nodes in the

separator last. Elimination is relatively fast for the disjoint pieces P and Q. It only
slows down at the end, for the (smaller) separator S.

The meshpoints in P have no direct connections to Q (both are connected to the
separator S). Numbered in that order, the “block arrow” stiffness matrix has two
blocks of zeros. Its K = LU factorization looks like this:

K =





KP 0 KPS

0 KQ KQS

KSP KSQ KS



 L =





LP

0 LQ

X Y Z



 U =





UP 0 A
UQ B

C



 (5)

The zero blocks in K give zero blocks in L and U . The submatrix KP produces LP

and UP. Then come the factors LQUQ of KQ, followed by the connections through
the separator. The major cost is often that last step, the solution of a fairly dense
system. When the separator S has size N , a dense system costs N 3.

A separator illustrates the key idea of domain decomposition: Cut the problem

into smaller pieces. This is natural for structural analysis of an airplane: Solve
separately for the wings and the fuselage. The smaller system for the separator (where
the pieces meet) is like the third row of equation (5). This expresses the requirement
that the unknown and its normal derivative (stress or flux) match along the separator.
We apologize that a full discussion of domain decomposition is impossible (see [–]).

Arrow matrix
(Figure 6.3)

1

2

3

4

5

6 is S

Separator comes last

(Figure 6.4)

P S Q

1

2

3

4

5

6

Blocks P, Q

Separator S

P S Q

Figure 6.6: A graph separator numbered last produces a block arrow matrix K.

Figure 6.6 shows three examples, each with separators. The graph for a perfect
arrow matrix has a one-point separator (very unusual). The 6-node rectangle has a
two-node separator in the middle. Every N by N grid can be cut by an N -point
separator (and N is much smaller than N 2).

On a rectangular grid, the best cut is down the middle in the shorter direction.
Our model problem on a square is actually the hardest ! A region shaped like a U
(or maybe a radiator in 3D) might look difficult. But actually it allows very short
separators and fast elimination. A tree needs no fill-in (Problem ).
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Nested Dissection

You could say that the numbering of P then Q then S is block minimum degree.
But one cut with one separator will not come close to an optimal numbering. It
is natural to extend the idea to a nested sequence of cuts. P and Q have their
own separators at the next level. This nested dissection continues until it is not
productive to cut further. It is a strategy of “divide and conquer.”

Figure 6.7 illustrates three levels of nested dissection on a 7 by 7 grid. The first
separator is down the middle. Then two cuts go across and four cuts go down.
Numbering the separators last within each stage, the matrix K of size 49 has arrows
inside arrows inside arrows. The spy command will display the pattern of nonzeros.

1 to 9

19 to 21

10 to 18

22 to 30

40 to 42

31 to 39

1 7 43 28

18 49 39

K =

2

4

∗ 0 ∗

0 ∗ ∗

∗ ∗ ∗

3

5

zero

zero

zero

zero

zero

zero

3 × 18

3 × 18

7 × 42 7×7

9×9

Figure 6.7: Three levels of separators. Still nonzeros in K, only in L.

Separators and nested dissection show how numbering strategies are based on the
graph of nodes. Edges between nodes correspond to nonzeros in the matrix K. The
fill-in created by elimination (entries F in L and U) corresponds to adjacent edges in
the graph. In practice, there has to be a balance between simplicity and optimality
in the numbering—in scientific computing simplicity is a very good thing!

Here are the complexity estimates for the Laplacian with N 2 or N3 nodes:

Nested Separators n = N 2 in 2D n = N3 in 3D
Space (nonzeros from fill-in) N2 log N N4

Time (flops for elimination) N3 N6

In the last century, nested dissection lost out (too slow) on almost all applications.
Now larger problems are appearing and the asymptotics eventually give nested dis-
section an edge. All planar graphs have separators of size

√
n into nearly equal pieces

(P and Q have sizes at most 2n/3). Of course a new idea for ordering could still win.
We don’t recommend the older algorithm of (reverse) Cuthill-McKee.

A reasonable compromise is the backslash command U = K\F that uses a nearly
minimum degree ordering in Sparse MATLAB.
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The text [GL] by George and Liu is the classic reference for this section on ordering
of the nodes. The new book [ ,2007] by Davis has a superb description of his
recent algorithms and how they are implemented (in MATLAB’s backslash and in
UMFPACK for sparse unsymmetric systems).

Problem Set 6.1

1 Create K2D for a 4 by 4 square grid with N 2 = 32 interior mesh points (so
n = 9). Print out its factors K = LU (or its Cholesky factor C = chol(K) for
the symmetrized form K = CTC). How many zeros in these triangular factors?
Also print out inv(K) to see that it is full.

2 As N increases, what parts of the LU factors of K2D are filled in ?

3 Can you answer the same question for K3D? In each case we really want an
estimate cNp of the number of nonzeros (the most important number is p).

4 Use the tic; ...; toc clocking command or the cpu command to compare
the solution time for K2Dx = random f in ordinary MATLAB and sparse
MATLAB (where K2D is defined as a sparse matrix). Above what value of N
does the sparse routine K\f win ?

5 Compare ordinary vs. sparse solution times in the three-dimensional K3Dx =
random f . At which N does the sparse K\f begin to win ?

6 Incomplete LU

7 Draw the next step after Figure 6.4 when the matrix has become 4 by 4 and the
graph has nodes 2–4–5–6. Which have minimum degree? Is there more fill-in?

8 Redraw the right side of Figure 6.4 if row number 2 is chosen as the second
pivot row. Node 2 does not have minimum degree. Indicate new edges in the
5-node graph and new nonzeros F in the matrix.

9 Order a tree to avoid all fill-in.

10 Block triangular.

11 Suppose the unknowns Uij on a square grid are stored in an N by N matrix, and
not listed in a vector U of length N 2. Show that the vector result of (K2D)U
is now produced by the matrix KU + UK.

12 Elimination in minimum degree order is started for the square mesh in Fig-
ure 6.5. How large do the degrees become as elimination continues? (You
could try a large graph, giving systematics instructions for ties in the minimum
degree.)

13 Experiment with the red-black permutation in equation ( ), to see how much
fill-in is produced by elimination. Is the red-black ordering superior to the
original row-by-row ordering?


