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5.4 The Heat Equation and Convection-Diffusion

The wave equation conserves energy. The heat equation ut = uxx dissipates energy.
The starting conditions for the wave equation can be recovered by going backward in
time. The starting conditions for the heat equation can never be recovered. Compare
ut = cux with ut = uxx, and look for pure exponential solutions u(x, t) = G(t) eikx:

Wave equation: G ′ = ickG G(t) = eickt has |G| = 1 (conserving energy)

Heat equation: G ′ =−k2G G(t) = e−k2t has G < 1 (dissipating energy)

Discontinuities are immediately smoothed out by the heat equation, since G is ex-
ponentially small when k is large. This section solves ut = uxx first analytically and
then by finite differences. The key to the analysis is the beautiful fundamental

solution starting from a point source (delta function). We will show in equation (7)
that this special solution is a bell-shaped curve:

u(x, t) =
1

√
4πt

e−x2/4t comes from the initial condition u(x, 0) = δ(x) . (1)

Notice that ut = cux + duxx has convection and diffusion at the same time. The
wave is smoothed out as it travels. This is a much simplified linear model of the
nonlinear Navier-Stokes equations for fluid flow. The relative strength of convection
by cux and diffusion by duxx will be given below by the Peclet number.

The Black-Scholes equation for option pricing in mathematical finance also has
this form. So do the key equations of environmental and chemical engineering.

For difference equations, explicit methods have stability conditions like ∆t ≤
1

2
(∆x)2. This very short time step is more expensive than c∆t ≤ ∆x. Implicit

methods can avoid that stability condition by computing the space difference ∆2U
at the new time level n + 1. This requires solving a linear system at each time step.

We can already see two major differences between the heat equation and the wave
equation (and also one conservation law that applies to both):

1. Infinite signal speed. The initial condition at a single point immediately

affects the solution at all points. The effect far away is not large, because of the
very small exponential e−x2/4t in the fundamental solution. But it is not zero.
(A wave produces no effect at all until the signal arrives, with speed c.)

2. Dissipation of energy. The energy 1

2

∫
(u(x, t))2 dx is a decreasing function

of t. For proof, multiply the heat equation ut = uxx by u. Integrate uuxx by
parts with u(∞) = u(−∞) = 0 to produce the integral of −(ux)

2:

Energy decay
d

dt

∫ ∞

−∞

1

2
u2 dx =

∫ ∞

−∞
uuxx dx = −

∫ ∞

−∞
(ux)

2 dx ≤ 0 . (2)
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3. Conservation of heat (analogous to conservation of mass):

Heat is conserved
d

dt

∫ ∞

−∞
u(x, t) dx =

∫ ∞

−∞
uxx dx =

[
ux(x, t)

]∞
x=−∞

= 0 . (3)

Analytic Solution of the Heat Equation

Start with separation of variables to find solutions to the heat equation:

Assume u(x, t) = G(t)E(x). Then ut = uxx gives G ′E = GE ′′ and
G ′

G
=

E ′′

E
.

(4)
The ratio G′/G depends only on t. The ratio E ′′/E depends only on x. Since
equation (4) says they are equal, they must be constant. This produces a useful
family of solutions to ut = uxx:

E ′′

E
=

G ′

G
is solved by E(x) = eikx and G(t) = e−k2t .

Two x-derivatives produce the same −k2 as one t-derivative. We are led to exponential
solutions of eikxe−k2t and to their linear combinations (integrals over different k):

General solution u(x, t) =
1

2π

∫∫∫
∞

−∞

û0(k)eikxe−k2t dx. (5)

At t = 0, formula (5) recovers the initial condition u(x, 0) because it inverts the
Fourier transform û0 (Section 4.4.) So we have the analytical solution to the heat
equation—not necessarily in an easily computable form ! This form usually requires
two integrals, one to find the transform û0(k) of u(x, 0), and the other to find the
inverse transform of û0(k)e−k2t in (5).

Example 1 Suppose the initial function is a bell-shaped Gaussian u(x, 0) = e−x2/2σ .
Then the solution remains a Gaussian. The number σ that measures the width of the
bell increases to σ + 2t at time t, as heat spreads out. This is one of the few integrals
involving e−x2

that we can do exactly. Actually, we don’t have to do the integral.

That function e−x2/2σ is the impulse response (fundamental solution) at time t = 0
to a delta function δ(x) that occurred earlier at t = − 1

2
σ. So the answer we want (at

time t) is the result of starting from that δ(x) and going forward a total time 1

2
σ + t:

Widening Gaussian u(x, t) =

√
π(2σ)√

π(2σ + 4t)
e−x2/(2σ + 4t) . (6)

This has the right start at t = 0 and it satisfies the heat equation.



5.4. THE HEAT EQUATION AND CONVECTION-DIFFUSION c©2006 Gilbert Strang

The Fundamental Solution

For a delta function u(x, 0) = δ(x) at t = 0, the Fourier transform is û0(k) = 1. Then
the inverse transform in (5) produces u(x, t) = 1

2π

∫
eikxe−k2t dk One computation of

this u uses a neat integration by parts for ∂u/∂x. It has three −1’s, from the integral
of ke−k2t and the derivative of ieikx and integration by parts itself:

∂u

∂x
=

1

2π

∫ ∞

−∞
(e−k2tk)(ieikx) dk = − 1

4πt

∫ ∞

−∞
(e−k2t)(xeikx) dk = −xu

2t
. (7)

This linear equation ∂u/∂x = −xu/2t is solved by u = ce−x2/4t. The constant
c = 1/

√
4πt is determined by the requirement

∫
u(x, t) dx = 1. (This conserves

the heat
∫

u(x, 0) dx =
∫

δ(x) dx = 1 that we started with. It is the area under a
bell-shaped curve.) The solution (1) for diffusion from a point source is confirmed:

Fundamental solution from
u(x, 0) = δ(x)

u(x, t) =
1√
4πt

e−x2/4t . (8)

In two dimensions, we can separate x from y and solve ut = uxx + uyy:

Fundamental solution from
u(x, y, 0) = δ(x)δ(y)

u(x, y, t) =

(
1√
4πt

)2

e−x2/4t e−y2/4t . (9)

With patience you can verify that u(x, t) and u(x, y, t) do solve the 1D and 2D heat
equations (Problem ). The zero initial conditions away from the origin are
correct as t → 0, because e−c/t goes to zero much faster than 1/

√
t blows up. And

since the total heat remains at
∫

u dx = 1 or
∫∫

u dx dy = 1, we have a valid solution.

If the source is at another point x = s, then the response just shifts by s. The
exponent becomes −(x−s)2/4t instead of −x2/4t. If the initial u(x, 0) is a combination

of delta functions, then by linearity the solution is the same combination of responses.
But every u(x, 0) is an integral

∫
δ(x−s) u(s, 0) ds of point sources ! So the solution to

ut = uxx is an integral of the responses to δ(x− s). Those responses are fundamental
solutions starting from all points x = s:

Solution from any u(x, 0) u(x, t) =
1√
4πt

∫ ∞

−∞
u(s, 0) e−(x− s)2/4t ds . (10)

Now the formula is reduced to one infinite integral—but still not simple. And for a
problem with boundary conditions at x = 0 and x = 1 (the temperature on a finite
interval, much more realistic), we have to think again. Similarly for an equation
ut = (c(x)ux)x with variable conductivity or diffusivity. That thinking probably
leads us to finite differences.

I see the solution u(x, t) in (10) as the convolution of the initial function u(x, 0)
with the fundamental solution. Three important properties are immediate:
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1. If u(x, 0) ≥ 0 for all x then u(x, t) ≥ 0 for all x and t. Nothing in
formula (10) will be negative.

2. The solution is infinitely smooth. The Fourier transform û0(k) in (5) is
multiplied by e−k2t. In (10), we can take all the x and t derivatives we want.

3. The scaling matches x2 with t. A diffusion constant d in the equation
ut = duxx will lead to the same solution with t replaced by dt, when we write
the equation as ∂u/∂(dt) = ∂2u/∂x2. The fundamental solution has e−x2/4dt

and its Fourier transform has e−dk2t.

Example 2 Suppose the initial temperature is a step function u(x, 0) = 0. Then for
negative x and u(x, 0) = 1 for positive x. The discontinuity is smoothed out immediately,
as heat flows to the left. The integral in formula (10) is zero up to the jump:

u(x, t) =
1√
4πt

∫ ∞

0

e−(x − s)2/4t ds . (11)

No luck with this integral ! We can find the area under a complete bell-shaped curve
(or half the curve) but there is no elementary formula for the area under a piece of the
curve. No elementary function has the derivative e−x2

. That is unfortunate, since those
integrals give cumulative probabilities and statisticians need them all the time. So they
have been normalized into the error function and tabulated to high accuracy:

Error function erf(x) =
2√
π

∫ x

0

e−s2

ds . (12)

The integral from −x to 0 is also erf(x). The normalization by 2/
√

π gives erf(∞) = 1.

We can produce this error function from the heat equation integral (11) by setting
S = (s−x)/

√
4t. Then s = 0 changes to S = −x/

√
4t as the lower limit on the integral,

and dS = ds/
√

4t. Split into an integral from 0 to ∞, and from −x/
√

4t to 0:

u(x, t) =

√
4t√
4πt

∫ ∞

−x/
√

4t

e−S2

dS =
1

2

(
1 + erf

(
x√
4t

))
. (13)

Good idea to check that this gives u = 1

2
at x = 0 (where the error function is zero).

This is the only temperature we know exactly, by symmetry between left and right.

Explicit Finite Differences

The simplest finite differences are forward for ∂u/∂t and centered for ∂2u/∂x2:

Explicit method
∆tU

∆t
=

∆2
x
U

(∆x)2

Uj,n+1 − Uj,n

∆t
=

Uj+1,n − 2Uj,n + Uj−1,n

(∆x)2
. (14)
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Each new value Uj,n+1 is given explicitly by Uj,n + R(Uj+1,n − 2Uj,n + Uj,n−1). The
crucial ratio for the heat equation ut = uxx is now R = ∆t/(∆x)2.

We substitute Uj,n = Gn eikj∆x to find the growth factor G = G(k, ∆t, ∆x):

One-step
growth factor

G = 1 + R(eik∆x − 2 + e−ik∆x) = 1 + 2R(cos k∆x − 1) . (15)

G is real, just as the exact one-step factor e−k2∆t is real. Stability requires |G| ≤ 1.
Again the most dangerous case is when the cosine equals −1 at k∆x = π:

Stability condition |G| = |1 − 4R| ≤ 1 which requires R =
∆t

(∆x)2
≤ 1

2
. (16)

In many cases we accept that small time step ∆t and use this simple method. The
accuracy from forward ∆t and centered ∆2

x is |U − u| = O(∆t + (∆x)2). Those two
error terms are comparable when R is fixed.

We could improve this one-step method to a multistep method. The “method
of lines” calls an ODE solver for the system of differential equations (continuous in
time, discrete in space). There is one equation for every meshpoint x = jh:

Method of Lines
dU

dt
=

∆2
x
U

(∆x)2

dUj

dt
=

Uj+1 − 2Uj + Uj−1

(∆x)2
. (17)

This is a stiff system, because its matrix −K (second difference matrix) has a large
condition number: λmax(K)/λmin(K) ≈ N2. We could choose a stiff solver like ode15s
in MATLAB.

Implicit Finite Differences

A fully implicit method for ut = uxx computes ∆2
xU at the new time (n + 1)∆t:

Implicit
∆tUn

∆t
=

∆2
x
Un+1

(∆x)2

Uj,n+1 − Uj,n

∆t
=

Uj+1,n+1 − 2Uj,n+1 + Uj−1,n+1

(∆x)2
. (18)

The accuracy is still first-order in time and second-order in space. But stability no
longer depends on the ratio R = ∆t/(∆x)2. We have unconditional stability, with a
growth factor 0 < G ≤ 1 for all k. Substituting Uj,n = Gneijk∆x into (18) and then
canceling those terms from both sides leaves an extra G on the right side:

G = 1 + RG(eik∆x − 2 + e−ik∆x) leads to G =
1

1 + 2R(1 − cos k∆x)
. (19)

The denominator is at least 1, which ensures that 0 < G ≤ 1. The time step is
controlled by accuracy, because stability is no longer a problem.



c©2006 Gilbert Strang

There is a simple way to improve to second-order accuracy. Center everything at

step n + 1

2
. Average an explicit ∆2

xUn with an implicit ∆2
xUn+1. This produces the

famous Crank-Nicolson method (like the trapezoidal rule):

Crank-Nicolson
Uj,n+1 − Uj,n

∆t
=

1

2(∆x)2
(∆2

xUj,n + ∆2
xUj,n+1) . (20)

Now the growth factor G, by substituting Uj,n = Gneijk∆x into (20), solves

G − 1

∆t
=

G + 1

2(∆x)2
(2 cos k∆x − 2) . (21)

Separate out the part involving G, write R for ∆t/(∆x)2, and cancel the 2’s:

Unconditional stability G =
1 + R(cos k∆x − 1)

1 − R(cos k∆x − 1)
has |G| ≤ 1 . (22)

The numerator is smaller than the denominator, since cos k∆x ≤ 1. We do notice
that cos k∆x = 1 whenever k∆x is a multiple of 2π. Then G = 1 at those frequencies,
so Crank-Nicolson does not give the strict decay of the fully implicit method. We
could weight the implicit ∆2

xUn+1 by a > 1

2
and the explicit ∆2

xUn by 1 − a < 1

2
, to

give a whole range of unconditionally stable methods (Problem ).

Numerical example

Finite Intervals with Boundary Conditions

We introduced the heat equation on the whole line −∞ < x < ∞. But a physical
problem will be on a finite interval like 0 ≤ x ≤ 1. We are back to Fourier series
(not Fourier integrals) for the solution u(x, t). And second differences bring back the
great matrices K, T, B, C that depend on the boundary conditions:

Absorbing boundary at x = 0: The temperature is held at u(0, t) = 0.

Insulated boundary: No heat flows through the left boundary if ux(0, t) = 0.

If both boundaries are held at zero temperature, the solution will approach u(x, t) = 0
everywhere as t increases. If both boundaries are insulated as in a freezer, the solution
will approach u(x, t) = constant. No heat can escape, and it is evenly distributed as

t → ∞. This case still has the conservation law
∫ 1

0
u(x, t) dx = constant.

Example 3 (Fourier series solution) We know that eikx is multiplied by e−k2t to give
a solution of the heat equation. Then u = e−k2t sin kx is another solution (combining
+k with −k). With zero boundary conditions u(0, t) = u(1, t) = 0, the only allowed
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frequencies are k = nπ (then sin nπx = 0 at both ends x = 0 and x = 1). The complete
solution is a combination of these exponential solutions with k = nπ:

Complete solution u(x, t) =
∞∑

n=1

bn e−n2π2t sin nπx . (23)

The Fourier sine coefficients bn are chosen to match u(x, 0) =
∑

bn sin nπx at t = 0.

You can expect cosines to appear for insulated boundaries, where the slope (not
the temperature) is zero. This gives exact solutions to compare with finite difference
solutions. For finite differences, absorbing boundary conditions produce the matrix

K (not B or C). The choice between explicit and implicit decides whether we have
second differences −KU at time level n or level n + 1:

Explicit method Un+1 − Un = −RKUn (24)

Fully implicit Un+1 − Un = −RKUn+1 (25)

Crank-Nicolson Un+1 − Un = −1

2
RK(Un + Un+1) . (26)

The explicit stability condition is again R ≤ 1

2
(Problem ). Both implicit meth-

ods are unconditionally stable (in theory). The reality test is to try them in practice.

An insulated boundary at x = 0 changes K to T . Two insulated boundaries
produce B. Periodic conditions will produce C. The fact that B and C are singular
no longer stops the computations. In the fully implicit method (I + RB)Un+1 = Un,
the extra identity matrix makes I + RB invertible.

The two-dimensional heat equation describes the temperature distribution in
a plate. For a square plate with absorbing boundary conditions, the difference matrix
K changes to K2D. The bandwidth jumps from 1 (triangular matrix) to N (when
meshpoints are ordered a row at a time). Each time step of the implicit method
now requires a serious computation. So implicit methods pay an increased price for
stability, to avoid the explicit restriction ∆t ≤ 1

4
(∆x)2 + 1

4
(∆y)2.

Convection-Diffusion

Put a chemical into flowing water. It diffuses while it is carried along by the flow. A
diffusion term d uxx appears together with a convection term c ux. This is the simplest
model for one of the most important differential equations in engineering:

Convection-diffusion equation
∂u

∂t
= c

∂u

∂x
+ d

∂2u

∂x2
. (27)

On the whole line −∞ < x < ∞, the flow and the diffusion don’t interact. If the
velocity is c, convection just carries along the diffusing solution to ht = d hxx:

Diffusing traveling wave u(x, t) = h(x + ct, t) . (28)
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Substituting into equation (27) confirms that this is the solution (correct at t = 0):

Chain rule
∂u

∂t
= c

∂h

∂x
+

∂h

∂t
= c

∂h

∂x
+ d

∂2h

∂x2
= c

∂u

∂x
+ d

∂2u

∂x2
. (29)

Exponentials also show this separation of convection eikct from diffusion e−dk2t:

Starting from eikx u(x, t) = e−dk2t eik(x + ct) . (30)

Convection-diffusion is a terrific model problem, and the constants c and d clearly
have different units. We take this small step into dimensional analysis:

Convection coefficient c:
distance

time
Diffusion coefficient d:

(distance)2

time
(31)

Suppose L is a typical length scale in the problem. The Peclet number Pe = cL/d
is dimensionless. It measures the relative importance of convection and diffusion. This
Peclet number for the linear equation (27) corresponds to the Reynolds number for
the nonlinear Navier-Stokes equations (Section ).

In the difference equation, the ratios r = c∆t/∆x and 2R = 2d∆t/(∆x)2 are also
dimensionless. That is why the stability conditions r ≤ 1 and 2R ≤ 1 were natural for
the wave and heat equations. The new problem combines convection and diffusion,
and the cell Peclet number P uses ∆x/2 as the length scale in place of L:

Cell Peclet Number P =
r

2R
=

c ∆x

2d
. (32)

We still don’t have agreement on the best finite difference approximation! Here
are three natural candidates (you may have an opinion after you try them):

1. Forward in time, centered convection, centered diffusion

2. Forward in time, upwind convection, centered diffusion

3. Explicit convection (centered or upwind), with implicit diffusion.

Each method will show the effects of r and R and P (we can replace r/2 by RP ):

1. Centered explicit
Uj,n+1 − Uj,n

∆t
= c

Uj+1,n − Uj−1,n

2∆x
+ d

∆2
xUj,n

(∆x)2
. (33)

Every new value Uj,n+1 is a combination of three known values at time n:

Uj,n+1 = (1 − 2R)Uj,n + (R + RP )Uj+1,n + (R − RP )Uj−1,n . (34)

Those three coefficients add to 1, and U = constant certainly solves equation (33). If

all three coefficients are positive, the method is surely stable. More than
that, oscillations cannot appear. Positivity of the middle coefficient requires R ≤ 1

2
,
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as usual for diffusion. Positivity of the other coefficients requires |P | ≤ 1. Of course
P will be small when ∆x is small (so we have convergence as ∆x → 0). In avoiding
oscillations, the actual cell size ∆x is crucial to the quality of U .

Figure 5.12 was created by Strikwerda [59] and Persson to show the oscillations for
P > 1 and the smooth approximations for P < 1. Notice how the initial hat function
is smoothed and spread and shrunk by diffusion. Problem finds the exact
solution, which is moved along by convection. Strictly speaking, even the oscillations
might pass the stability test |G| ≤ 1 (Problem ). But they are unacceptable.

Figure 5.12: Convection-diffusion with and without numerical oscillations: R =
, r = and .

2. Upwind convection
Uj,n+1 − Uj,n

∆t
= c

Uj+1,n − Uj,n

∆x
+ d

∆2
xUj,n

(∆x)2
. (35)

The accuracy in space has dropped to first order. But the oscillations are eliminated
whenever r + 2R ≤ 1. That condition ensures three positive coefficients when (35) is
solved for the new value Uj,n+1:

Uj,n+1 = (RP + R)Uj+1,n + (1 − RP − 2R)Uj,n + RUj−1,n . (36)

Arguments are still going, comparing the centered method 1 and the upwind method 2.
The difference between the two convection terms, upwind minus centered, is ac-
tually a diffusion term hidden in (35) !

Extra diffusion
Uj+1 − Uj

∆x
− Uj+1 − Uj−1

2∆x
=

(
∆x

2

)
Uj+1 − 2Uj + Uj−1

(∆x)2
. (37)

So the upwind method has this extra numerical diffusion or “artificial viscosity”
to kill oscillations. It is a non-physical damping. If the upwind approximation were
included in Figure 5.12, it would be distinctly below the exact solution. Nobody is
perfect.

3. Implicit diffusion
Uj,n+1 − Uj,n

∆t
= c

Uj+1,n − Uj,n

∆x
+ d

∆2
xUj,n+1

(∆x)2
. (38)

MORE TO DO

Problem Set 5.4

1 Solve the heat equation starting from a combination u(x, 0) = δ(x+1)−2δ(x)+
δ(x− 1) of three delta functions. What is the total heat

∫
u(x, t) dx at time t ?

Draw a graph of u(x, 1) by hand or by MATLAB.

2 Integrating the answer to Problem 1 gives another solution to the heat equation:

Show that w(x, t) =

∫ x

0

u(X, t) dX solves wt = wxx .

Graph the initial function w(x, 0) and sketch the solution w(x, 1).
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3 Integrating once more solves the heat equation ht = hxx starting from h(x, 0) =∫
w(X, 0) dX = hat function. Draw the graph of h(x, 0). Figure 5.12 shows the

graph of h(x, t), shifted along by convection to h(x + ct, t).

4 In convection-diffusion, compare the condition R ≤ 1

2
, P ≤ 1 (for positive coef-

ficients in the centered method) with r + 2R ≤ 1 (for the upwind method). For
which c and d is the upwind condition less restrictive, in avoiding oscillations ?

5 The eigenvalues of the n by n second difference matrix K are λk = 2−2 cos kπ
n+1

.
The eigenvectors yk in Section 1.5 are discrete samples of sin kπx. Write the
general solutions to the fully explicit and fully implicit equations (14) and (18)
after N steps, as combinations of those discrete sines yk times powers of λk.

6 Another exact integral involving e−x2/4t is

∫ ∞

0

x e−x2/4t dx =
[
−2t e−x2/4t

]∞
0

= 2t .

From (17), show that the temperature is u =
√

t at the center point x = 0
starting from a ramp u(x, 0) = max(0, x).

7 A ramp is the integral of a step function. So the solution of ut = uxx starting
from a ramp (Problem 6) is the integral of the solution starting from a step
function (Example 2 in the text). Then

√
t must be the total amount of heat

that has crossed from x > 0 to x < 0 in Example 2 by time t. Explain each of
those three sentences.


