5.4 The Heat Equation and Convection-Diffusion

The wave equation conserves energy. The heat equation $u_t = u_{xx}$ dissipates energy. The starting conditions for the wave equation can be recovered by going backward in time. The starting conditions for the heat equation can never be recovered. Compare $u_t = cu_x$ with $u_t = u_{xx}$, and look for pure exponential solutions $u(x, t) = G(t) e^{ikx}$:

Wave equation: G' = ickG $G(t) = e^{ickt}$ has |G| = 1 (conserving energy) Heat equation: $G' = -k^2G$ $G(t) = e^{-k^2t}$ has G < 1 (dissipating energy)

Discontinuities are immediately smoothed out by the heat equation, since G is exponentially small when k is large. This section solves $u_t = u_{xx}$ first analytically and then by finite differences. The key to the analysis is the beautiful **fundamental** solution starting from a point source (delta function). We will show in equation (7) that this special solution is a bell-shaped curve:

$$u(x,t) = \frac{1}{\sqrt{4\pi t}} e^{-x^2/4t} \text{ comes from the initial condition } u(x,0) = \delta(x).$$
(1)

Notice that $u_t = cu_x + du_{xx}$ has convection and diffusion at the same time. The wave is smoothed out as it travels. This is a much simplified linear model of the nonlinear Navier-Stokes equations for fluid flow. The relative strength of convection by cu_x and diffusion by du_{xx} will be given below by the Peclet number.

The **Black-Scholes equation** for option pricing in mathematical finance also has this form. So do the key equations of environmental and chemical engineering.

For difference equations, explicit methods have stability conditions like $\Delta t \leq \frac{1}{2}(\Delta x)^2$. This very short time step is more expensive than $c\Delta t \leq \Delta x$. Implicit methods can avoid that stability condition by computing the space difference $\Delta^2 U$ at the new time level n + 1. This requires solving a linear system at each time step.

We can already see two major differences between the heat equation and the wave equation (and also one conservation law that applies to both):

- 1. Infinite signal speed. The initial condition at a single point immediately affects the solution at all points. The effect far away is not large, because of the very small exponential $e^{-x^2/4t}$ in the fundamental solution. But it is not zero. (A wave produces no effect at all until the signal arrives, with speed c.)
- 2. Dissipation of energy. The energy $\frac{1}{2} \int (u(x,t))^2 dx$ is a decreasing function of t. For proof, multiply the heat equation $u_t = u_{xx}$ by u. Integrate uu_{xx} by parts with $u(\infty) = u(-\infty) = 0$ to produce the integral of $-(u_x)^2$:

Energy decay
$$\frac{d}{dt} \int_{-\infty}^{\infty} \frac{1}{2} u^2 dx = \int_{-\infty}^{\infty} u u_{xx} dx = -\int_{-\infty}^{\infty} (u_x)^2 dx \le 0.$$
(2)

3. Conservation of heat (analogous to conservation of mass):

Heat is conserved
$$\frac{d}{dt} \int_{-\infty}^{\infty} u(x,t) \, dx = \int_{-\infty}^{\infty} u_{xx} \, dx = \left[u_x(x,t) \right]_{x=-\infty}^{\infty} = 0.$$
 (3)

Analytic Solution of the Heat Equation

Start with **separation of variables** to find solutions to the heat equation:

Assume
$$u(x,t) = G(t)E(x)$$
. Then $u_t = u_{xx}$ gives $G'E = GE''$ and $\frac{G'}{G} = \frac{E''}{E}$.
(4)

The ratio G'/G depends only on t. The ratio E''/E depends only on x. Since equation (4) says they are equal, they must be constant. This produces a useful family of solutions to $u_t = u_{xx}$:

$$rac{E^{\prime\prime}}{E} = rac{G^{\prime}}{G}$$
 is solved by $E(x) = e^{ikx}$ and $G(t) = e^{-k^2t}$

Two x-derivatives produce the same $-k^2$ as one t-derivative. We are led to exponential solutions of $e^{ikx}e^{-k^2t}$ and to their linear combinations (integrals over different k):

General solution
$$u(x,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \widehat{u}_0(k) e^{ikx} e^{-k^2t} dx.$$
 (5)

At t = 0, formula (5) recovers the initial condition u(x, 0) because it inverts the Fourier transform \hat{u}_0 (Section 4.4.) So we have the analytical solution to the heat equation—not necessarily in an easily computable form! This form usually requires two integrals, one to find the transform $\hat{u}_0(k)$ of u(x, 0), and the other to find the inverse transform of $\hat{u}_0(k)e^{-k^2t}$ in (5).

Example 1 Suppose the initial function is a bell-shaped Gaussian $u(x,0) = e^{-x^2/2\sigma}$. Then the solution remains a Gaussian. The number σ that measures the width of the bell increases to $\sigma + 2t$ at time t, as heat spreads out. This is one of the few integrals involving e^{-x^2} that we can do exactly. Actually, we don't have to do the integral.

That function $e^{-x^2/2\sigma}$ is the impulse response (fundamental solution) at time t = 0 to a delta function $\delta(x)$ that occurred earlier at $t = -\frac{1}{2}\sigma$. So the answer we want (at time t) is the result of starting from that $\delta(x)$ and going forward a total time $\frac{1}{2}\sigma + t$:

Widening Gaussian
$$u(x,t) = \frac{\sqrt{\pi(2\sigma)}}{\sqrt{\pi(2\sigma+4t)}} e^{-x^2/(2\sigma+4t)}$$
. (6)

This has the right start at t = 0 and it satisfies the heat equation.

The Fundamental Solution

For a delta function $u(x, 0) = \delta(x)$ at t = 0, the Fourier transform is $\hat{u}_0(k) = 1$. Then the inverse transform in (5) produces $u(x,t) = \frac{1}{2\pi} \int e^{ikx} e^{-k^2t} dk$ One computation of this u uses a neat integration by parts for $\partial u/\partial x$. It has three -1's, from the integral of ke^{-k^2t} and the derivative of ie^{ikx} and integration by parts itself:

$$\frac{\partial u}{\partial x} = \frac{1}{2\pi} \int_{-\infty}^{\infty} (e^{-k^2 t} k) (ie^{ikx}) \, dk = -\frac{1}{4\pi t} \int_{-\infty}^{\infty} (e^{-k^2 t}) (xe^{ikx}) \, dk = -\frac{xu}{2t} \,. \tag{7}$$

This linear equation $\partial u/\partial x = -xu/2t$ is solved by $u = ce^{-x^2/4t}$. The constant $c = 1/\sqrt{4\pi t}$ is determined by the requirement $\int u(x,t) dx = 1$. (This conserves the heat $\int u(x,0) dx = \int \delta(x) dx = 1$ that we started with. It is the area under a bell-shaped curve.) The solution (1) for diffusion from a point source is confirmed:

Fundamental solution from

$$u(x,0) = \delta(x)$$
 $u(x,t) = \frac{1}{\sqrt{4\pi t}} e^{-x^2/4t}$.
(8)

In two dimensions, we can separate x from y and solve $u_t = u_{xx} + u_{yy}$:

Fundamental solution from

$$u(x, y, 0) = \delta(x)\delta(y)$$
 $u(x, y, t) = \left(\frac{1}{\sqrt{4\pi t}}\right)^2 e^{-x^2/4t} e^{-y^2/4t}.$ (9)

With patience you can verify that u(x,t) and u(x,y,t) do solve the 1D and 2D heat equations (Problem _____). The zero initial conditions away from the origin are correct as $t \to 0$, because $e^{-c/t}$ goes to zero much faster than $1/\sqrt{t}$ blows up. And since the total heat remains at $\int u \, dx = 1$ or $\iint u \, dx \, dy = 1$, we have a valid solution.

If the source is at another point x = s, then the response just shifts by s. The exponent becomes $-(x-s)^2/4t$ instead of $-x^2/4t$. If the initial u(x,0) is a *combination* of delta functions, then by linearity the solution is the same combination of responses. But every u(x,0) is an integral $\int \delta(x-s) u(s,0) ds$ of point sources! So the solution to $u_t = u_{xx}$ is an integral of the responses to $\delta(x-s)$. Those responses are fundamental solutions starting from all points x = s:

Solution from any
$$u(x,0)$$
 $u(x,t) = \frac{1}{\sqrt{4\pi t}} \int_{-\infty}^{\infty} u(s,0) e^{-(x-s)^2/4t} ds$. (10)

Now the formula is reduced to one infinite integral—but still not simple. And for a problem with boundary conditions at x = 0 and x = 1 (the temperature on a finite interval, much more realistic), we have to think again. Similarly for an equation $u_t = (c(x)u_x)_x$ with variable conductivity or diffusivity. That thinking probably leads us to finite differences.

I see the solution u(x,t) in (10) as the **convolution** of the initial function u(x,0) with the fundamental solution. Three important properties are immediate:

- 1. If $u(x,0) \ge 0$ for all x then $u(x,t) \ge 0$ for all x and t. Nothing in formula (10) will be negative.
- 2. The solution is infinitely smooth. The Fourier transform $\hat{u}_0(k)$ in (5) is multiplied by e^{-k^2t} . In (10), we can take all the x and t derivatives we want.
- 3. The scaling matches x^2 with t. A diffusion constant d in the equation $u_t = du_{xx}$ will lead to the same solution with t replaced by dt, when we write the equation as $\partial u/\partial (dt) = \partial^2 u/\partial x^2$. The fundamental solution has $e^{-x^2/4dt}$ and its Fourier transform has e^{-dk^2t} .

Example 2 Suppose the initial temperature is a step function u(x, 0) = 0. Then for negative x and u(x, 0) = 1 for positive x. The discontinuity is smoothed out immediately, as heat flows to the left. The integral in formula (10) is zero up to the jump:

$$u(x,t) = \frac{1}{\sqrt{4\pi t}} \int_0^\infty e^{-(x-s)^2/4t} \, ds \,. \tag{11}$$

No luck with this integral! We can find the area under a complete bell-shaped curve (or half the curve) but there is no elementary formula for the area under a piece of the curve. No elementary function has the derivative e^{-x^2} . That is unfortunate, since those integrals give *cumulative probabilities* and statisticians need them all the time. So they have been normalized into the **error function** and tabulated to high accuracy:

Error function
$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-s^2} ds$$
. (12)

The integral from -x to 0 is also $\operatorname{erf}(x)$. The normalization by $2/\sqrt{\pi}$ gives $\operatorname{erf}(\infty) = 1$.

We can produce this error function from the heat equation integral (11) by setting $S = (s-x)/\sqrt{4t}$. Then s = 0 changes to $S = -x/\sqrt{4t}$ as the lower limit on the integral, and $dS = ds/\sqrt{4t}$. Split into an integral from 0 to ∞ , and from $-x/\sqrt{4t}$ to 0:

$$u(x,t) = \frac{\sqrt{4t}}{\sqrt{4\pi t}} \int_{-x/\sqrt{4t}}^{\infty} e^{-S^2} dS = \frac{1}{2} \left(1 + \operatorname{erf}\left(\frac{x}{\sqrt{4t}}\right) \right).$$
(13)

Good idea to check that this gives $u = \frac{1}{2}$ at x = 0 (where the error function is zero). This is the only temperature we know exactly, by symmetry between left and right.

Explicit Finite Differences

The simplest finite differences are *forward* for $\partial u/\partial t$ and *centered* for $\partial^2 u/\partial x^2$:

Explicit method
$$\frac{\Delta_t U}{\Delta t} = \frac{\Delta_x^2 U}{(\Delta x)^2} \qquad \frac{U_{j,n+1} - U_{j,n}}{\Delta t} = \frac{U_{j+1,n} - 2U_{j,n} + U_{j-1,n}}{(\Delta x)^2}.$$
 (14)

Each new value $U_{j,n+1}$ is given explicitly by $U_{j,n} + R(U_{j+1,n} - 2U_{j,n} + U_{j,n-1})$. The crucial ratio for the heat equation $u_t = u_{xx}$ is now $\mathbf{R} = \Delta t / (\Delta x)^2$.

We substitute $U_{j,n} = G^n e^{ikj\Delta x}$ to find the growth factor $G = G(k, \Delta t, \Delta x)$:

One-step growth factor $G = 1 + R(e^{ik\Delta x} - 2 + e^{-ik\Delta x}) = 1 + 2R(\cos k\Delta x - 1).$ (15)

G is real, just as the exact one-step factor $e^{-k^2\Delta t}$ is real. Stability requires $|G| \leq 1$. Again the most dangerous case is when the cosine equals -1 at $k\Delta x = \pi$:

Stability condition
$$|G| = |1 - 4R| \le 1$$
 which requires $R = \frac{\Delta t}{(\Delta x)^2} \le \frac{1}{2}$. (16)

In many cases we accept that small time step Δt and use this simple method. The accuracy from forward Δ_t and centered Δ_x^2 is $|U - u| = O(\Delta t + (\Delta x)^2)$. Those two error terms are comparable when R is fixed.

We could improve this one-step method to a **multistep method**. The "**method** of lines" calls an ODE solver for the system of differential equations (continuous in time, discrete in space). There is one equation for every meshpoint x = jh:

Method of Lines
$$\frac{dU}{dt} = \frac{\Delta_x^2 U}{(\Delta x)^2} \qquad \frac{dU_j}{dt} = \frac{U_{j+1} - 2U_j + U_{j-1}}{(\Delta x)^2}.$$
 (17)

This is a **stiff system**, because its matrix -K (second difference matrix) has a large condition number: $\lambda_{\max}(K)/\lambda_{\min}(K) \approx N^2$. We could choose a stiff solver like ode15s in MATLAB.

Implicit Finite Differences

A fully implicit method for $u_t = u_{xx}$ computes $\Delta_x^2 U$ at the new time $(n+1)\Delta t$:

Implicit
$$\frac{\Delta_t U_n}{\Delta t} = \frac{\Delta_x^2 U_{n+1}}{(\Delta x)^2} \quad \frac{U_{j,n+1} - U_{j,n}}{\Delta t} = \frac{U_{j+1,n+1} - 2U_{j,n+1} + U_{j-1,n+1}}{(\Delta x)^2}.$$
 (18)

The accuracy is still first-order in time and second-order in space. But stability no longer depends on the ratio $R = \Delta t/(\Delta x)^2$. We have unconditional stability, with a growth factor $0 < G \leq 1$ for all k. Substituting $U_{j,n} = G^n e^{ijk\Delta x}$ into (18) and then canceling those terms from both sides leaves an extra G on the right side:

$$G = 1 + RG(e^{ik\Delta x} - 2 + e^{-ik\Delta x})$$
 leads to $G = \frac{1}{1 + 2R(1 - \cos k\Delta x)}$. (19)

The denominator is at least 1, which ensures that $0 < G \leq 1$. The time step is controlled by accuracy, because stability is no longer a problem.

©2006 Gilbert Strang

There is a simple way to improve to second-order accuracy. Center everything at step $n + \frac{1}{2}$. Average an explicit $\Delta_x^2 U_n$ with an implicit $\Delta_x^2 U_{n+1}$. This produces the famous **Crank-Nicolson method** (like the trapezoidal rule):

Crank-Nicolson
$$\frac{U_{j,n+1} - U_{j,n}}{\Delta t} = \frac{1}{2(\Delta x)^2} (\Delta_x^2 U_{j,n} + \Delta_x^2 U_{j,n+1}).$$
 (20)

Now the growth factor G, by substituting $U_{j,n} = G^n e^{ijk\Delta x}$ into (20), solves

$$\frac{G-1}{\Delta t} = \frac{G+1}{2(\Delta x)^2} \left(2\cos k\Delta x - 2\right).$$
(21)

Separate out the part involving G, write R for $\Delta t/(\Delta x)^2$, and cancel the 2's:

Unconditional stability
$$G = \frac{1 + R(\cos k\Delta x - 1)}{1 - R(\cos k\Delta x - 1)}$$
 has $|\mathbf{G}| \le 1$. (22)

The numerator is smaller than the denominator, since $\cos k\Delta x \leq 1$. We do notice that $\cos k\Delta x = 1$ whenever $k\Delta x$ is a multiple of 2π . Then G = 1 at those frequencies, so Crank-Nicolson does not give the strict decay of the fully implicit method. We could weight the implicit $\Delta_x^2 U_{n+1}$ by $a > \frac{1}{2}$ and the explicit $\Delta_x^2 U_n$ by $1 - a < \frac{1}{2}$, to give a whole range of unconditionally stable methods (Problem _____).

Numerical example

Finite Intervals with Boundary Conditions

We introduced the heat equation on the whole line $-\infty < x < \infty$. But a physical problem will be on a **finite interval** like $0 \le x \le 1$. We are back to Fourier series (not Fourier integrals) for the solution u(x,t). And second differences bring back the great matrices K, T, B, C that depend on the boundary conditions:

Absorbing boundary at x = 0: The temperature is held at u(0, t) = 0.

Insulated boundary: No heat flows through the left boundary if $u_x(0,t) = 0$.

If both boundaries are held at zero temperature, the solution will approach u(x,t) = 0 everywhere as t increases. If both boundaries are insulated as in a freezer, the solution will approach u(x,t) = constant. No heat can escape, and it is evenly distributed as $t \to \infty$. This case still has the conservation law $\int_0^1 u(x,t) dx = constant$.

Example 3 (Fourier series solution) We know that e^{ikx} is multiplied by e^{-k^2t} to give a solution of the heat equation. Then $u = e^{-k^2t} \sin kx$ is another solution (combining +k with -k). With zero boundary conditions u(0,t) = u(1,t) = 0, the only allowed

frequencies are $k = n\pi$ (then $\sin n\pi x = 0$ at both ends x = 0 and x = 1). The complete solution is a combination of these exponential solutions with $k = n\pi$:

Complete solution
$$u(x,t) = \sum_{n=1}^{\infty} b_n e^{-n^2 \pi^2 t} \sin n \pi x.$$
 (23)

The Fourier sine coefficients b_n are chosen to match $u(x,0) = \sum b_n \sin n\pi x$ at t = 0.

You can expect cosines to appear for insulated boundaries, where the slope (not the temperature) is zero. This gives exact solutions to compare with finite difference solutions. For finite differences, *absorbing boundary conditions produce the matrix* K (not B or C). The choice between explicit and implicit decides whether we have second differences -KU at time level n or level n + 1:

Explicit method	$U_{n+1} - U_n = -RKU_n$	(24)
Fully implicit	$U_{n+1} - U_n = -RKU_{n+1}$	(25)
Crank-Nicolson	$U_{n+1} - U_n = -\frac{1}{2}RK(U_n + U_{n+1}).$	(26)

The explicit stability condition is again $R \leq \frac{1}{2}$ (Problem ____). Both implicit methods are unconditionally stable (in theory). The reality test is to try them in practice.

An insulated boundary at x = 0 changes K to T. Two insulated boundaries produce B. Periodic conditions will produce C. The fact that B and C are singular no longer stops the computations. In the fully implicit method $(I + RB)U_{n+1} = U_n$, the extra identity matrix makes I + RB invertible.

The **two-dimensional heat equation** describes the temperature distribution in a plate. For a square plate with absorbing boundary conditions, the difference matrix K changes to K2D. The bandwidth jumps from 1 (triangular matrix) to N (when meshpoints are ordered a row at a time). Each time step of the implicit method now requires a serious computation. So implicit methods pay an increased price for stability, to avoid the explicit restriction $\Delta t \leq \frac{1}{4}(\Delta x)^2 + \frac{1}{4}(\Delta y)^2$.

Convection-Diffusion

Put a chemical into flowing water. It diffuses while it is carried along by the flow. A diffusion term $d u_{xx}$ appears together with a convection term $c u_x$. This is the simplest model for one of the most important differential equations in engineering:

Convection-diffusion equation
$$\frac{\partial u}{\partial t} = c \frac{\partial u}{\partial x} + d \frac{\partial^2 u}{\partial x^2}.$$
 (27)

On the whole line $-\infty < x < \infty$, the flow and the diffusion don't interact. If the velocity is c, convection just carries along the diffusing solution to $h_t = d h_{xx}$:

Diffusing traveling wave u(x,t) = h(x+ct,t). (28)

©2006 Gilbert Strang

Substituting into equation (27) confirms that this is the solution (correct at t = 0):

Chain rule
$$\frac{\partial u}{\partial t} = c \frac{\partial h}{\partial x} + \frac{\partial h}{\partial t} = c \frac{\partial h}{\partial x} + d \frac{\partial^2 h}{\partial x^2} = c \frac{\partial u}{\partial x} + d \frac{\partial^2 u}{\partial x^2}.$$
 (29)

Exponentials also show this separation of convection e^{ikct} from diffusion e^{-dk^2t} :

Starting from
$$e^{ikx}$$
 $u(x,t) = e^{-dk^2t} e^{ik(x+ct)}$. (30)

Convection-diffusion is a terrific model problem, and the constants c and d clearly have different units. We take this small step into *dimensional analysis*:

Convection coefficient
$$c$$
: $\frac{\text{distance}}{\text{time}}$ Diffusion coefficient d : $\frac{(\text{distance})^2}{\text{time}}$ (31)

Suppose L is a typical length scale in the problem. The Peclet number Pe = cL/d is dimensionless. It measures the relative importance of convection and diffusion. This Peclet number for the linear equation (27) corresponds to the *Reynolds number* for the nonlinear Navier-Stokes equations (Section).

In the difference equation, the ratios $r = c\Delta t/\Delta x$ and $2R = 2d\Delta t/(\Delta x)^2$ are also dimensionless. That is why the stability conditions $r \leq 1$ and $2R \leq 1$ were natural for the wave and heat equations. The new problem combines convection and diffusion, and the *cell Peclet number* P uses $\Delta x/2$ as the length scale in place of L:

Cell Peclet Number
$$P = \frac{r}{2R} = \frac{c\,\Delta x}{2d}$$
. (32)

We still don't have agreement on the best finite difference approximation! Here are three natural candidates (you may have an opinion after you try them):

1. Forward in time, centered convection, centered diffusion

2. Forward in time, upwind convection, centered diffusion

3. Explicit convection (centered or upwind), with implicit diffusion.

Each method will show the effects of r and R and P (we can replace r/2 by RP):

1. Centered explicit
$$\frac{U_{j,n+1} - U_{j,n}}{\Delta t} = c \frac{U_{j+1,n} - U_{j-1,n}}{2\Delta x} + d \frac{\Delta_x^2 U_{j,n}}{(\Delta x)^2}.$$
 (33)

Every new value $U_{j,n+1}$ is a combination of three known values at time n:

$$U_{j,n+1} = (1 - 2R)U_{j,n} + (R + RP)U_{j+1,n} + (R - RP)U_{j-1,n}.$$
 (34)

Those three coefficients add to 1, and U = constant certainly solves equation (33). If all three coefficients are positive, the method is surely stable. More than that, oscillations cannot appear. Positivity of the middle coefficient requires $R \leq \frac{1}{2}$,

as usual for diffusion. Positivity of the other coefficients requires $|\mathbf{P}| \leq \mathbf{1}$. Of course P will be small when Δx is small (so we have convergence as $\Delta x \to 0$). In avoiding oscillations, the actual cell size Δx is crucial to the quality of U.

Figure 5.12 was created by Strikwerda [59] and Persson to show the oscillations for P > 1 and the smooth approximations for P < 1. Notice how the initial hat function is smoothed and spread and shrunk by diffusion. Problem _____ finds the exact solution, which is moved along by convection. Strictly speaking, even the oscillations might pass the stability test $|G| \leq 1$ (Problem _____). But they are unacceptable.

Figure 5.12: Convection-diffusion with and without numerical oscillations: R =_____, r =_____ and _____.

2. Upwind convection $\frac{U_{j,n+1} - U_{j,n}}{\Delta t} = c \frac{U_{j+1,n} - U_{j,n}}{\Delta x} + d \frac{\Delta_x^2 U_{j,n}}{(\Delta x)^2}.$ (35)

The accuracy in space has dropped to first order. But the oscillations are eliminated whenever $r + 2R \leq 1$. That condition ensures three positive coefficients when (35) is solved for the new value $U_{j,n+1}$:

$$U_{j,n+1} = (\mathbf{RP} + \mathbf{R})U_{j+1,n} + (1 - \mathbf{RP} - 2\mathbf{R})U_{j,n} + \mathbf{R}U_{j-1,n}.$$
 (36)

Arguments are still going, comparing the centered method 1 and the upwind method 2. The difference between the two convection terms, **upwind minus centered**, is actually a diffusion term hidden in (35)!

Extra diffusion
$$\frac{U_{j+1} - U_j}{\Delta x} - \frac{U_{j+1} - U_{j-1}}{2\Delta x} = \left(\frac{\Delta x}{2}\right) \frac{U_{j+1} - 2U_j + U_{j-1}}{(\Delta x)^2}.$$
 (37)

So the upwind method has this extra numerical diffusion or "*artificial viscosity*" to kill oscillations. It is a non-physical damping. If the upwind approximation were included in Figure 5.12, it would be *distinctly below* the exact solution. Nobody is perfect.

3. Implicit diffusion
$$\frac{U_{j,n+1} - U_{j,n}}{\Delta t} = c \frac{U_{j+1,n} - U_{j,n}}{\Delta x} + d \frac{\Delta_x^2 U_{j,n+1}}{(\Delta x)^2}.$$
 (38)

MORE TO DO

Problem Set 5.4

- 1 Solve the heat equation starting from a combination $u(x, 0) = \delta(x+1) 2\delta(x) + \delta(x-1)$ of three delta functions. What is the total heat $\int u(x,t) dx$ at time t? Draw a graph of u(x, 1) by hand or by MATLAB.
- **2** Integrating the answer to Problem 1 gives another solution to the heat equation:

Show that
$$w(x,t) = \int_0^x u(X,t) \, dX$$
 solves $w_t = w_{xx}$

Graph the initial function w(x, 0) and sketch the solution w(x, 1).

- **3** Integrating once more solves the heat equation $h_t = h_{xx}$ starting from $h(x, 0) = \int w(X, 0) dX = hat$ function. Draw the graph of h(x, 0). Figure 5.12 shows the graph of h(x, t), shifted along by convection to h(x + ct, t).
- 4 In convection-diffusion, compare the condition $R \leq \frac{1}{2}$, $P \leq 1$ (for positive coefficients in the centered method) with $r + 2R \leq 1$ (for the upwind method). For which c and d is the upwind condition less restrictive, in avoiding oscillations?
- 5 The eigenvalues of the *n* by *n* second difference matrix K are $\lambda_k = 2 2 \cos \frac{k\pi}{n+1}$. The eigenvectors y_k in Section 1.5 are discrete samples of $\sin k\pi x$. Write the general solutions to the fully explicit and fully implicit equations (14) and (18) after N steps, as combinations of those discrete sines y_k times powers of λ_k .
- **6** Another exact integral involving $e^{-x^2/4t}$ is

$$\int_0^\infty x \, e^{-x^2/4t} \, dx = \left[-2t \, e^{-x^2/4t}\right]_0^\infty = 2t \, .$$

From (17), show that the temperature is $u = \sqrt{t}$ at the center point x = 0 starting from a ramp $u(x, 0) = \max(0, x)$.

7 A ramp is the integral of a step function. So the solution of $u_t = u_{xx}$ starting from a ramp (Problem 6) is the integral of the solution starting from a step function (Example 2 in the text). Then \sqrt{t} must be the total amount of heat that has crossed from x > 0 to x < 0 in Example 2 by time t. Explain each of those three sentences.