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5.3 The Wave Equation and Staggered Leapfrog

This section focuses on the second-order wave equation utt = c2uxx. We find
the exact solution u(x, t). Accuracy and stability are confirmed for the leapfrog
method (centered second differences in t and x). This two-step method requires that
we rethink the growth factor G, which was clear for a single step. The result will be
p = 2 for the order of accuracy, and c∆t/∆x ≤ 1 for stability.

It is useful to rewrite the wave equation as a first-order system. The components
v1 and v2 of the vector unknown can be ∂u/∂t and c ∂u/∂x. Then we are back to a
single-step growth factor, but G is now a 2 by 2 matrix.

Second-order accuracy extends to this system vt = Avx if we use a staggered

mesh. The mesh for v2 lies in between the mesh for v1. This has become the
standard method in computational electromagnetics (solving Maxwell’s equations).
The physical laws relating the electric field E and the magnetic field H are beautifully
copied by the difference equations on a staggered mesh. The mesh becomes especially
important in more space dimensions (x-y and x-y-z), and in finite volume methods.

This section goes beyond the one-way wave equation in at least five ways:

1. Two characteristic lines x+ct = Cleft and x−ct = Cright go through each (x, t).

2. The leapfrog method involves three time levels t + ∆t, t, and t − ∆t.

3. First-order systems have vector unknowns v(x, t) and growth matrices G.

4. Staggered grids give the much-used FDTD method for Maxwell’s equations.

5. More space dimensions lead to new CFL and vN stability conditions on ∆t.

With −∞ < x < ∞, we don’t yet have boundary conditions in space. And we are
not facing real problems like utt = c2(x) uxx + Feikx, with a high frequency forcing
terms (k >> 1) and a varying speed c(x).

Solution of the Wave Equation

Exactly as for the one-way equation ut = cux, we solve the two-way wave equation
utt = c2uxx for each pure exponential. That allows us to separate the variables.
The space variable is in eikx, and we look for solutions u(x, t) = G(t)eikx:

Each k
∂2u

∂t2
= c2 ∂2u

∂x2
becomes

d2G

dt2
eikx = i2c2k2G eikx . (1)

Thus Gtt = i2c2k2G. This second-order equation has two solutions, Gleft = eickt and
Gright = e−ickt. So there are two waves with speed c:

Pure waves uleft(x, t) = eik(x+ct) and uright(x, t) = eik(x−ct) . (2)
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Combinations of left-going waves eik(x+ct) will give a general function F1(x + ct).
Combinations of eik(x−ct) give F2(x − ct). The complete solution includes both:

u(x, t) = uleft(x, t) + uright(x, t) = F1(x + ct) + F2(x − ct) . (3)

We need those two functions to match an initial shape u(x, 0) and velocity ut(x, 0):

At t = 0 u(x, 0) = F1(x) + F2(x) and ut(x, 0) = c F ′

1 (x) − c F ′

2 (x) . (4)

Solving for F1 and F2 gives the unique solution that matches u(x, 0) and ut(x, 0):

Solution u(x, t) =
u(x + ct, 0) + u(x − ct, 0)

2
+

1

2c

∫ x+ct

x−ct

ut(x, 0) dx . (5)

The “domain of dependence” of u(x, t) includes the initial values from x−ct to x+ct.
That domain is on the left side of Figure 5.9, bounded by the characteristic lines.

Example 1 Starting with zero velocity, ut(x, 0) = 0, the integrated term in formula (5)
is zero. A step function S(x) (wall of water) will travel left and right along characteristic
lines, as in Figure 5.8. It reaches the points x = 1 and x = −1 at time t = 1/c:

Two walls u(x, t) =
1

2
S(x + ct) +

1

2
S(x − ct) =

{

0 or
1

2
or 1

}

.

By time t, the initial jump at x = 0 affects the solution between x = −ct and x = ct.
That is the “domain of influence” of the point x = 0, t = 0.

-

Time 0

x
u(x, 0) = 0

u(x, 0) = 1

0
- x

Time t

characteristic

u(x, t) = 1
2

u(x, t) = 1

−ct 0 ct

Figure 5.8: Two-wall solution to the wave equation starting from a step function.

The Semidiscrete Wave Equation

Let me start by discretizing only the space derivative uxx. The second difference
Uj+1 − 2Uj + Uj−1 is the natural choice, divided by (∆x)2. For the approximations
Uj(t) at the meshpoints x = j∆x, we have a family of ODEs in the time direction
(method of lines):

Semidiscrete utt = c2uxx U ′′
j =

c2

(∆x)2
(Uj+1 − 2Uj + Uj−1 . (6)
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Again we follow every exponential, looking for Uj(t) = G(t)eikj∆x. Substitute into (6)
and cancel the common factor eikj∆x. Instead of Gtt = −c2k2G we have

Growth equation Gtt =
c2

(∆x)2
(eik∆x − 2 + e−ik∆x)G = − c2

(∆x)2
(2 − 2 cos k∆x)G .(7)

The correct right side −c2k2G is multiplied by a factor F 2. This F 2 turns up so often
that we need to recognize it! Use 2 − 2 cos θ = 4 sin2(θ/2):

Sinc squared F 2 =
2 − 2 cos k∆x

k2(∆x)2
=

4 sin2(k∆x/2)

k2(∆x)2
=

(

sin(k∆x/2)

k∆x/2

)2

. (8)

The “sinc function” is defined as sin θ divided by θ. When θ = k∆x is small, this is
1 + 0(θ2). Then F 2 near 1 and equation (7) is close to the correct Gtt = −c2k2G.

For every k∆x, the growth equation (7) has two exponential solutions:

Semidiscrete growth Gtt = −c2F 2k2G gives G(t) = e±icFkt . (9)

The wave speed c is multiplied by F to give the numerical “phase velocity” cF . Notice

that F depends on k. Different frequencies eikx are traveling at different speeds cF (k).
This is dispersion and we will see it again in Section 5. .

I will mention that the “group velocity”—the derivative of cFk with respect to
k—is a more important quantity than the phase velocity cF .

The semidiscrete form suggests a good algorithm for the wave equation, if we have
boundary conditions (say u = 0 along the lines t = 0 and t = π). If h = ∆x = π

n+1
,

this interval has interior meshpoints. The n by n second difference matrix is the
special K from earlier chapters (but now we have −K):

Semidiscrete with boundaries U ′′(t) =
c2

(∆x)2
KU . (10)

This is just the equation MU ′′ + KU = 0 of oscillating springs in Section 2.2.

The n eigenvalues of K are positive numbers 2 − 2 cos j∆x. The only change
from the equation on an infinite line is that j takes only the values 1, 2, . . . , n. The
oscillations go on forever as in (8), the energy is conserved, and now the waves bounce
back from the boundaries instead of continuing out to x = ±∞.

Leapfrog from Centered Differences

A fully discrete method also approximates utt by a centered differences. This time
difference “leaps over” the space difference at t = n∆t:

Leapfrog method
Uj,n+1 − 2Uj,n + Uj,n−1

(∆t)2
= c2 Uj+1,n − 2Uj,n + Uj−1,n

(∆x)2
. (11)

This has two key differences from the 5-point molecule for uxx + uyy = 0 (Laplace).
First, utt − c2uxx has a minus sign. Second, we have two conditions at t = 0 and no
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conditions at a later time. We are marching forward in time (marching with Laplace’s
equation would be totally unstable). A separate calculation for the first time step
computes Uj,1 from the initial shape u(x, 0) and the velocity ut(x, 0).

The accuracy of leapfrog is normally second-order. Substitute the true u(x, t)
into (11), and use the Taylor series for second differences (Section 1.2). The first
terms in the local error give consistency.

Second-order utt +
1

12
(∆t)2utttt + · · · = c2(uxx +

1

12
(∆x)2uxxxx + · · · ). (12)

In this case utttt = c2uxxtt = c2uttxx = c4uxxxx. The two sides of (12) differ by

Local discretization error
1

12
[(∆t)2c4 − (∆x)2c2]uxxxx + · · · (13)

Again c∆t = ∆x is the golden time step that follows the characteristic exactly. The
two triangles in Figure 5.9 become exactly the same in this borderline case r = 1.
The CFL reasoning shows instability for r > 1. We now show that r ≤ 1 is stable.

-

6
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1

c
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- x

U(x, n∆t)

x − n∆x x + n∆x

slope
∆t

∆x
slope − ∆t

∆x

Figure 5.9: Domains of dependence: u from wave equation and U from leapfrog.

Stability of the Leapfrog Method

A difference equation must use the initial conditions in this whole interval, to have
a chance of converging to u(x, t). The domain of dependence for U must include the
domain of dependence for u. The slopes must have ∆t/∆x ≤ 1/c. Since convergence
requires stability, we have a Courant-Friedrichs-Lewy condition on ∆t:

CFL condition The leapfrog method will require r = c ∆t/∆x ≤ 1.

For a double-step difference equation, we still look for pure solutions U(x, n∆t) =
Gneikx, separating time from space. In the leapfrog equation (11) this gives

[

Gn+1 − 2Gn + Gn−1

(∆t)2

]

eikx = c2Gn

[

eik∆x − 2 + e−ik∆x

(∆x)2

]

eikx .

Set r = c∆t/∆x and cancel Gn−1eikx. This leaves a quadratic equation for G:

G2 − 2G + 1 = r2 G (2 cos k∆x − 2) . (14)
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The two-step leapfrog equation allows two G’s (of course !). For stability, both must
satisfy |G| ≤ 1 for all frequencies k. Rewrite equation (14) for G:

Growth factor equation G2 − 2
[

1 − r2 + r2 cos k∆x
]

G + 1 = 0 . (15)

The roots of G2 − 2aG + 1 = 0 are G = a ±
√

a2 − 1. Everything depends on that
square root giving an imaginary number, when a2 = [1 − r2 + r2 cos k∆x]2 ≤ 1:

If a2 ≤ 1 then G = a ± i
√

1 − a2 has |G|2 = a2 + (1 − a2) = 1 .

The CFL condition r ≤ 1 does produce a2 ≤ 1 and the leapfrog method is stable:

Stability If r ≤ 1 then |a| = |1 − r2 + r2 cos k∆x| ≤ (1 − r2) + r2 = 1 . (16)

An unstable r > 1 would produce |a| = |1 − 2r2| > 1 at the dangerous k∆x = π.
Then both G’s are real, and their product is 1, and one of them has |G| > 1.

Note 1 Suppose r is exactly 1, so that c∆t = ∆x. At this “golden ratio” we
expect perfect accuracy. The middle terms −2Uj,n and −2r2Uj,n cancel in the leapfrog
equation (11), leaving a complete leap over the center points at (j, n) when r = 1:

Exact leapfrog Uj,n+1 + Uj,n−1 = Uj+1,n + Uj−1,n . (17)

The difference equation is satisfied by u(x, t), because it is satisfied by every wave
U(x + ct) and U(x − ct). Take Uj,n = U(j∆x + cn∆t) and use c∆t = ∆x:

Uj,n+1 and Uj+1,n are both equal to U(j∆x + cn∆t + ∆x)

Uj,n−1 and Uj−1,n are both equal to U(j∆x + cn∆t − ∆x)

So (17) is satisfied by all traveling waves U(x + ct), and similarly by U(x − ct).

Note 2 You could also apply leapfrog to the one-way equation ut = c ux:

One-way leapfrog Uj,n+1 − Uj,n−1 =
c∆t

∆x
(Uj+1,n − Uj−1,n). (18)

Now the growth factor equation is G2 − 2(ir sin k∆x)G − 1 = 0. Problem
confirms that the stability condition is again r ≤ 1. In that stable case, one growth
factor is sensible and the other is strange:

G1 = eir sink∆x ≈ eick∆t and G2 = −e−ir sin k∆x ≈ −1 . (19)

G1 and G2 are exactly on the unit circle. With |G| = 1 there is no room to move.
Numerical diffusion α(Uj+1,n − 2Uj,n + Uj−1,n) usually adds extra stability, but not
here. So leapfrog for first-order equations can be dangerous.

Section 5.4 will study the convection-diffusion equation ut = c ux + d uxx.
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Wave Equation in Higher Dimensions

The wave equation extends to three-dimensional space (with speed set at c = 1):

3D Wave equation utt = uxx + uyy + uzz . (20)

Waves go in all directions, and the solution is a superposition of pure harmonics.
These plane waves now have three wave numbers k, `, m, and frequency w:

Exponential solutions u(x, y, z, t) = ei(ωt + kx + `y + mz) .

Substituting into the wave equation gives ω2 = k2 + `2 + m2. So there are two
frequencies ±ω. These exponential solutions combine to match the initial wave height
u(x, y, z, 0) and its velocity ut(x, y, z, 0).

Suppose the initial velocity is a three-dimensional delta function δ(x, y, z):

δ(x, y, z) = δ(x)δ(y)δ(z) gives

∫∫∫

f(x, y, z) δ(x, y, z) dV = f(0, 0, 0) . (21)

The resulting u(x, y, z, t) will be the fundamental solution of the wave equation. It is
the response to the delta function, which gives equal weight to all harmonics. Rather
than computing that superposition we find it from the wave equation itself. Spherical
symmetry greatly simplifies uxx + uyy + uzz, when u depends only on r and t:

Symmetry produces u(r, t)
∂2u

∂t2
=

∂2u

∂r2
+

2

r

∂u

∂r
. (22)

Multiplying by r, this is a one-dimensional equation (ru)tt = (ru)rr ! Its
solutions ru will be functions of r − t and r + t. Starting from a delta function is like
sound going out from a bell, or light from a point source. The solution is nonzero

only on the sphere r = t. So every point hears the bell only once, as the sound wave
passes by. An impulse in 3D produces a sharp response (this is Huygen’s principle).

In 2D, the solution does not return to zero for t > r. We couldn’t hear or see
clearly in Flatland. You might imagine a point source in two dimensions as a line

source in the z-direction in three dimensions. The solution is independent of z, so it
satisfies utt = uxx +uyy. But in three dimensions, spheres starting from sources along
the line continue to hit the listener. They come from further and further away, so the
solution decays—but it is not zero. The wave front passes, but waves keep coming.

EXERCISE ON EQ.(26)

Leapfrog Method in Higher Dimensions

In one dimension, two characteristics go out from each point (x, 0). In 2D and 3D,
a characteristic cone goes out from (x, y, 0) and (x, y, z, 0). It is essential to see how
the stability condition changes from r = c∆t/∆x ≤ 1.
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The leapfrog method replaces uxx and uyy by centered differences at time n∆t:

Leapfrog for utt = uxx + uyy

Un+1 − 2Un + Un−1

(∆t)2
=

∆2
x Un

(∆x)2
+

∆2
y Un

(∆y)2
.

U0 and U1 come from the given initial conditions u(x, y, 0) and ut(x, y, 0). We look
for a solution Un = Gneikxei`y with separation of variables. Substituting into the
leapfrog equation and canceling Gn−1eikxei`y produces the 2D equation for two G’s:

Growth factor
G2 − 2G + 1

(∆t)2
= G

(2 cos k ∆x − 2)

(∆x)2
+ G

(2 cos ` ∆y − 2)

(∆y)2
. (23)

Again this has the form G2 − 2aG + 1 = 0. You can see a in brackets:

G2 − 2

[

1 −
(

∆t

∆x

)2

(1 − cos k ∆x) −
(

∆t

∆y

)2

(1 − cos ` ∆y)

]

G + 1 = 0 . (24)

Both roots must have |G| = 1 for stability. This still requires −1 ≤ a ≤ 1. When the
cosines are −1 (the dangerous value) we find the stability condition for leapfrog:

Stability −1 ≤ 1 − 2

(

∆t

∆x

)2

− 2

(

∆t

∆y

)2

needs

(

∆t

∆x

)2

+

(

∆t

∆y

)2

≤ 1. (25)

For ∆x = ∆y on a square grid, this is ∆t ≤ ∆x/
√

2. In three dimensions it would be
∆t ≤ ∆x/

√
3. Those also come from the CFL condition, that the characteristic cone

must lie inside the pyramid that gives the leapfrog domain of dependence. Figure 5.10
shows the cone and pyramid just touching, when ∆t = ∆x/

√
2.

Cone has circular base for utt = uxx + uyy

Pyramid has diamond base for leapfrog
Cone and pyramid go up to (0, 0, ∆t)

∆t (∆x, 0, 0)

(0, ∆x, 0)

Figure 5.10: The pyramid contains and touches the cone when (∆t)2 = (∆x)2/2.

An Equivalent First-order System

I can display a system of two equations vt = Avx that is equivalent to utt = c2uxx:

First-order system
∂

∂t

[

ut

cux

]

=

[

0 c
c 0

]

∂

∂x

[

ut

cux

]

. (26)

The first equation recovers utt = c2uxx. The second is the identity cuxt = cutx. Notice
that the 2 by 2 matrix is symmetric and its eigenvalues are the wave velocities ±c.
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This “symmetric hyperbolic” form vt = Avx is useful in theory and practice. The
energy E(t) =

∫

1
2
‖v(x, t)‖2 dx is automatically constant in time ! Here is the proof

for any equation vt = Avx with a symmetric matrix A:

∂

∂t

(

1

2
‖v‖2

)

=
∑

vi

∂vi

∂t
= vTvt = vTAvx =

∂

∂x

(

1

2
vTAv

)

. (27)

When you integrate over all x, the left side is ∂E/∂t. The right side is 1
2
vTAv at

the limits x = ±∞. Those limits give zero (no signal has reached that far). So the
derivative of E(t) is zero, and E(t) stays constant.

The Euler equations of compressible flow are also a first-order system, but not
linear. In physics and engineering, a linear equation deals with a small disturbance.
Something from outside acts to change the equilibrium, but not by much:

in acoustics it is a slowly moving body

in aerodynamics it is a slender wing

in elasticity it is a small load

in electromagnetism it is a small source.

Below some level, the cause-effect relation is very close to linear. In acoustics, the
sound speed is steady when pressure is nearly constant. In elasticity, Hooke’s law
holds until the geometry changes or the material begins to break down. In electro-
magnetism, nonlinearity comes with relativistic and quantum effects.

The case to understand has A = constant matrix, with n real eigenvalues λ and
eigenvectors w. The vector equation vt = Avx will split into n scalar one-way wave
equations Ut = λ Ux. When Aw = λw we look for v(x, t) = U(x, t)w:

vt = Avx becomes
∂U

∂t
w = A

∂U

∂x
w = λ

∂U

∂x
w so

∂U

∂t
= λ

∂U

∂x
. (28)

The complete solution vector is v(x, t) = U1(x + λ1t)w1 + · · ·+ Un(x + λnt)wn. The

problem vt = Avx has n signal speeds λi and it sends out n waves.

There are n characteristic lines x + λit = constant. The wave equation has
[

0 c
c 0

]

and two eigenvalues λ = c and λ = −c. The eigenvectors w are ( 1
2
,−1

2
) and (1

2
, 1

2
).

Then the two scalar equations Ut = λUx produce left and right waves:

λ1 = c
∂

∂t
(ut + c ux) = c

∂

∂x
(ut + c ux)

λ2 = −c
∂

∂t
(ut − c ux) = −c

∂

∂x
(ut − c ux) .

(29)

Each equation agrees with utt = c2uxx. The one-way waves are U(x, t) = U(x+λt, 0).
The vector solution v(x, t) is recovered from U1w1 + U2w2:

v =

[

ut

c ux

]

= (ut + c ux)

[

1
2

−1
2

]

+ (ut − c ux)

[

1
2
1
2

]

. (30)

A stable difference method for vt = Avx comes from a stable method for ut = ±cux.
Just replace c by A in Lax-Friedrichs and Lax-Wendroff, or go to leapfrog.
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Leapfrog on a Staggered Grid

The discrete case should copy the continuous case. The two-step leapfrog difference
equation should reduce to a pair of one-step equations. But if we don’t keep the
individual equations centered, they will lose second-order accuracy. The way to
center both first-order equations is to use a staggered grid (Figure 5.11).

Please allow me to name the two components v1 = E and v2 = H. Then the
staggered grid for the wave equation matches Yee’s method for Maxwell’s equations.
Yee’s idea transformed the whole subject of computational electromagnetics (it is
now called the FDTD method: finite differences in the time domain). Previously
the moment method, which is Galerkin’s method, had been dominant—but staggered
grids are so natural for E and H. We stay with the wave equation here, copying (26):

Maxwell in 1D
(normalized)

∂E/∂t = c ∂H/∂x
∂H/∂t = c ∂E/∂x

becomes
∆tE/∆t=c∆xH/∆x
∆tH/∆t=c∆xE/∆x .

(31)

Those first derivatives of E and H are replaced by first differences. I will put E
on the standard grid and H on the staggered (half-integer) grid. Notice how all the

differences are centered in Figure 5.11a. This gives second-order accuracy.

The identities Etx = Ext and Htx = Hxt lead to wave equations for E and H:

Et = cHx

Ht = cEx
becomes

Ett = cHxt = cHtx = c2Exx

Htt = cExt = cEtx = c2Hxx
(32)

In the discrete case, the identity is ∆x(∆t) = ∆t(∆x). Differences copy derivatives.

When we eliminate H, we get the two-step leapfrog equation for E.
And eliminating E gives the leapfrog equation for H. This all comes from the finite
difference analogue of the cross-derivative identity utx = uxt:

∂

∂x

(

∂u

∂t

)

=
∂

∂t

(

∂u

∂x

)

corresponds to
∆x(∆tU)

(∆x)(∆t)
=

∆t(∆xU)

(∆t)(∆x)
. (33)

With equal denominators, we only need to check the numerators. On any grid, the
same 1’s and −1’s appear both ways in ∆x∆t and ∆t∆x !

1

−1 1

−1

∆x(∆tU) = (Un+1,j+1 − Un,j+1) − (Un+1,j − Un,j)
∆t(∆xU) = (Un+1,j+1 − Un+1,j) − (Un,j+1 − Un,j)

You could compare ( ) with the Cauchy-Riemann equations ux = sy and uy = −sx

for the potential u(x, y) and stream function s(x, y). (Those solve Laplace’s equation
and not the wave equation.) It would be natural to discretize the Cauchy-Riemann
equations on a staggered grid.

May I emphasize that these grids are useful for many other equations too. We will
see the “half-point” grid values in Section 5. for the flux F in the conservation
law ut + F (u)x = 0, which is a nonlinear extension of the one-way wave equation.
Half-point values are centrally important throughout the finite volume method.
Maxwell’s equations in integral form lead to the finite integration technique [ ].



5.3. THE WAVE EQUATION AND STAGGERED LEAPFROG c©2006 Gilbert Strang

Maxwell’s Equations

For electrodynamics, the number c in the wave equation is the speed of light. It is the
same large number that appears in Einstein’s e = mc2. The CFL stability condition
c2(∆t)2 ≤ (∆x)2 + (∆y)2 + (∆z)2 for the leapfrog method might require very small
time steps (on the scale of ordinary life). But we all know that the wavelength for light
is nothing like a meter or a centimeter. The leapfrog method is entirely appropriate,
and we write Maxwell’s equations without source terms:

Maxwell’s equations in free space
∂E

∂t
=

1

ε
curl H and

∂H

∂t
= − 1

µ
curl E .(34)

An important application is the reflection of a radar signal by an airplane. The region
of interest is exterior to the plane. In principle that region extends infinitely far
in all directions. In practice we compute inside a large box, and choose boundary
conditions that don’t reflect waves back into the box from its artificial boundary
(which is a computational region and not physical).

Those absorbing boundary conditions [ ] are crucial to a good discretization.
Chapter 7 of [ ] describes how a “perfectly matched layer” can select coefficients
so that waves go through the boundary with very little reflection. Applications of
Maxwell’s equations range all the way from the Earth’s electromagnetic environment
to cell phones (safety of the user) to micron-scale lasers and photonics.

The first of Maxwell’s six equations in ( ) involves the electric field component
Ex:

∂

∂t
Ex =

1

ε

[

∂

∂y
Hz −

∂

∂z
Hy

]

. (35)

Yee’s difference equation computes Ex at the new time (n + 1)∆t from Ex at time
n∆t and the space differences of Hz and Hy at time (n + 1

2
)∆t. Figure 5.11

shows how those components of the magnetic field H are on a grid that is staggered
with respect to the grid for E. We have six differential equations like (35) and six
difference equations, to produce Ex, Ey, Ez at time (n + 1)∆t and then Hx, Hy, Hz at
time (n + 1.5)∆t.

The stability condition c2(∆t)2 ≤ (∆x)2+(∆y)2+(∆z)2 is acceptable. Perhaps the
greatest drawback is the rectangular grid (finite elements are always more adaptable).
But the FDTD method has been used with 109 meshpoints, which we cannot afford
on an unstructured mesh. Finite differences also have numerical dispersion—the
discrete wave speeds depend on the wave number k = (kx, ky, kz). Those speeds
don’t exactly match c. We will have phase factors like F in equation ( ), extended
to include ∆y and ∆z. When the dispersion creates significant errors, we can upgrade
the spatial differences to fourth-order accuracy (using more mesh values). But those
wider difference methods can go across material interfaces and external boundaries.
This produces the ever-present give and take of numerical analysis: higher accuracy
brings greater complexity. We can take larger steps ∆t but every step is slower (and
harder to code).
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FIGURE TO COME...

Figure 5.11:
∆E

∆t
= c

∆H

∆x
and

∆H

∆t
= c

∆E

∆x
are staggered but centered.

Problem Set 5.3

1 Write the equation utt = uxx + uyy as a first-order system vt = Avx + Bvy

with the vector unknown v = (ut, ux, uy). The matrices A and B should be
symmetric. Then the energy E(t) = 1

2

∫

(u2
t + u2

x + u2
y) dx is constant.

2 How was the symmetry of A used in the final step vTAvx = (1
2
vTAv)x in equa-

tion (27) ? You could write out vTAv =
∑ ∑

aijvi(x)vj(x) and take the deriva-
tive of each term by the product rule.

3 Add Gauss law div D = 0 and div B = 0 with D = εE and B = µH.


