18.085: PROBLEM SET 7 Due August 4, 2014 9:30AM IN CLASS

Question 1. (35 pts.) Solving Poisson's equation numerically.

We will solve Poisson's equation

$$-\Delta u = 6(x - y) + 2, \quad 0 \le x \le 1, \ 0 \le y \le 1$$

on the unit square, subject to the boundary conditions

- $u = x^2(1-x)$ on the horizontal edges of the square, and
- $u = y(1-y)^2$ on the vertical edges.
- (a) Verify that $u(x, y) = x^2(1-x) + y(1-y)^2$ is the exact solution to this problem. To visualize this solution in Matlab, use the following few lines of code and print the plot:

[X,Y] = meshgrid(0:.001:1); U_exact = (X.^2).*(1-X) + Y.*((1-Y).^2); surf(X,Y,U_exact,'edgecolor','none'); view([0,90]); colorbar; axis square;

- (b) We will now solve the equation numerically in Matlab. Let N be the number of unknowns in each direction (x and y). Number the nodes by row from bottom to top, as we did in class. Write a code that follows these steps:
 - i. Construct the matrix K, the 1D second-derivative matrix, using the following few lines of code:
 - v = [2 -1 zeros(1, N-2)];
 - K = toeplitz(v);
 - ii. Construct the matrix K2D, the 5-point Laplacian matrix in 2D, using K. Hint: Equation (3) on page 284 of the textbook is useful.
 - iii. Now construct the vector \vec{F} using the right-hand side of Poisson's equation, ignoring the boundary conditions for now. (Careful with the indexing!)

iv. As we saw in class, the boundary conditions modify some of the entries of \vec{F} . For now, ignore the four corners; we will deal with them in the next step. For example, we can modify \vec{F} using the boundary conditions on the bottom edge as follows:

for k = 2:N-1F(k) = F(k) + g(k*h,0);

end;

In this code, g(x, y) is the boundary value of u(x, y), and h is the grid spacing. Do the same for the other edges. (Careful on how h relates to N.)

v. Now deal with the four corners. For example, the value of \vec{F} corresponding to the bottom left corner is modified as follows:

F(1) = F(1) + g(h,0) + g(0,h);

Do the same for the other three corners.

- vi. Solve for the unknowns \vec{U} using backslash.
- vii. To visualize your solution, you will need to rearrange the components of your
 vector U in matrix form. To do so, use the following few lines of code:
 UMat = reshape(U,N,N)';
 [X2,Y2] = meshgrid(h:h:1-h);
 surf(X2,Y2,UMat,'edgecolor','none');
 view([0,90]); axis square; colorbar;
- (c) Show plots of your approximate solutions for N = 10, 30 and 50. How do they compare (visually) to the exact solution you found in part (a)?

Question 2. (15 pts.) 9-point stencil for the Laplacian.

In class, we showed that the 5-point approximation for the negative Laplacian $-\Delta$ is given by

$$-\Delta u = -\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) \approx \frac{1}{h^2} \left(4u(x,y) - u(x+h,y) - u(x-h,y) - u(x,y+h) - u(x,y-h)\right)$$

where h is the grid spacing. This approximation is accurate to order $O(h^2)$. It turns out that the following 9-point approximation to the Laplacian may be more accurate:

$$-\Delta u \approx \frac{1}{6h^2} \left[20u(x,y) - 4\left(u(x+h,y) + u(x-h,y) + u(x,y+h) + u(x,y-h)\right) - \left(u(x+h,y+h) + u(x+h,y-h) + u(x-h,y+h) + u(x-h,y-h)\right) \right]$$

Suppose you want to solve Poisson's equation $-\Delta u = f$ on the unit square $(0 \le x \le 1, 0 \le y \le 1)$ with some boundary conditions. Write down the matrix K corresponding to the 9-point Laplacian for h = 1/4.

Question 3. (30 pts.) Fourier series of f(x) = x.

Let f(x) be the 2π -periodic extension of the function g(x) = x defined on the interval $-\pi \le x < \pi$. The function f(x) is called the *sawtooth wave*.

- (a) Sketch f(x).
- (b) Find the Fourier series for f(x). Write the series in terms of sines and cosines. You can either find the sine/cosine series directly or deduce it from the complex series. *Hint:* Use integration by parts.
- (c) Use Parseval's theorem to deduce the following identity:

$$\sum_{n=1}^\infty \frac{1}{n^2} = \frac{\pi^2}{6}$$

Question 4. (20 pts.) Fourier series of $f(x) = e^{-x}$.

Let f(x) be the 2π -periodic extension of the function $g(x) = e^{-x}$ defined on the interval $-\pi \le x < \pi$.

- (a) Sketch f(x).
- (b) Find the complex Fourier series for f(x).

Bonus (5 pts.). Fourier coefficients and differentiability

- (a) Let $f_2(x)$ be the periodic extension of the function $g_2(x) = x^2$ defined on the interval $-1 \le x < 1$. Show that $f_2(x)$ is continuous, but that f'_2 is not continuous.
- (b) Let $f_3(x)$ be the periodic extension of the function $g_3(x) = x^3 + ax^2 + bx$ defined on the same interval. Find the constants a and b such that f_3 and f'_3 are both continuous. Show that f''_3 is not continuous.
- (c) Let $f_4(x)$ be the periodic extension of the function $g_4(x) = x^4 + ax^3 + bx^2 + cx$ defined on the same interval. Find the constants a, b and c such that f_4, f'_4 and f''_4 are continuous. Show that f''_4 is not continuous.
- (d) Find the Fourier coefficients of f_2 , f_3 and f_4 in Matlab. Show plots demonstrating that they decay (in absolute value) like $1/n^2$, $1/n^3$ and $1/n^4$, respectively. Explain why this is the case.
- (e) Let $f(x) = e^{\cos(\pi x)}$. Find the Fourier coefficients of f in Matlab, and show a plot demonstrating that they decay exponentially in n. Explain why this is the case.

Hints for parts (d) and (e):

You can find the integral of a function (for example, f(x) = x²) on the interval [a, b] in Matlab using the following command:
 quadgk(@(x) x.^2,a,b)

Note the dot after x.

• To demonstrate the rate of decay of the Fourier coefficients, you may want to think about plotting their log ...