
18.085: PROBLEM SET 6 SOLUTIONS

Question 1. (10 pts.) Cubic finite elements.

Recall that essential boundary conditions are imposed on the finite elements, but natural

boundary conditions are not. For the equation u′′ = f(x) (elastic bar), boundary conditions

on u are essential, while those on u′ are natural. For the equation u′′′′ = f(x) (bending beam),

boundary conditions on u and u′ are essential, whereas those on u′′ and u′′′ are natural.

(a) The boundary conditions on u and u′ are essential, so they must be incorporated. We

drop φd0 and φd3 because they do not satisfy φ(0) = 0 and φ(1) = 0, respectively. We

also drop φs0 and φs3 because they do not satisfy φ′(0) = 0 and φ′(1) = 0, respectively.

Indeed, it is clear from the definitions of the cubic finite elements (and their graphs

on page 245 of the textbook) that φdn = 1 and (φsn)′ = 1/h at the meshpoint x = nh.

(b) The boundary conditions on u are both essential, so they must be incorporated. We

drop φd0 and φd3 because they do not satisfy φ(0) = 0 and φ(1) = 0, respectively.

(c) The boundary condition on u is essential, but the one on u′ is not. We thus only drop

φd0, because it does not satisfy φ(0) = 0.

(d) The boundary conditions on u are essential, but those on u′′ is not. We thus only

drop φd0 and φd3 because they do not satisfy φ(0) = 0 and φ(1) = 0, respectively.

Question 2. (20 pts.) Laplace’s equation and level curves.

(a) The equation is

uxx + uyy = y2 − 3λx− 1

To find a solution, you can integrate the x-terms twice with respect to x, and the

y-terms twice with respect to y. (You can do either for the constant term). This

works because each term is a function either x or y but not both. This yields the

solution

u(x, y) =
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(b) Recall that the solutions to Laplace’s equation in polar coordinates have the form

u(r, θ) = rn cosnθ and u(r, θ) = rn sinnθ. We simply need to pick out the values of

n that satisfy the boundary condition u(1, θ) = cos 2θ+ sin 6θ+ 1. The solution thus

has the form

u(r, θ) = r2 cos 2θ + r6 sin 6θ + 1

(c) This equation does not have a solution. Note that the left side of the equation is

∂
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which cannot equal the right side ex
2−3y.

(d) The gradient of u(x, y) is

∇u = (e−y cosx,−e−y sinx)

Note that the vector field ∇u is divergence-free:

div(∇u) = −e−y sinx+ e−y sinx = 0

The vector field ∇u thus admits a stream function S(x, y) that satisfies

e−y cosx =
∂S

∂y
, −e−y sinx = −∂S

∂x

Recall from class that the streamlines (the level curves of the stream function S(x, y))

are perpendicular to the level curves of u(x, y). We thus need to find the function S.

Integrating both sides of the equations above, we have

S(x, y) = −e−y cosx+ c(x), S(x, y) = −e−y cosx+ d(y)

We thus conclude that the level curves of S(x, y) = −e−y cosx are perpendicular to

those of u(x, y) = e−y sinx.

(e) Bonus: Recall that eiz = eixe−y = e−y(cosx + i sinx), where z = x + iy. Or,

−iieiz = e−y(sinx− i cosx). We thus conclude that

u(x, y) = e−y sinx = <(−ieiz), S(x, y) = −e−y cosx = =(−ieiz)
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so the relevant function is f(z) = −ieiz.

Question 3. (20 pts) Laplace’s equation on a square.

(a) Note that

d

dx
sinhx =

1

2

(
ex + e−x

)
= coshx,

d2

dx2
sinhx =

1

2

(
ex − e−x

)
= sinhx

We also know that

d2

dx2
sinx = − sinx

Let un(x, y) = sin(πnx) sinh(πny). Using the chain rule, we find that

∂2un

∂x2
= −(πn)2 sin(nπx) sinh(nπy),

∂2un

∂y2
= (πn)2 sin(nπx) sinh(nπy)

Combining these expressions, we conclude that

∆un =
∂2un

∂x2
+
∂2un

∂y2
= −(πn)2 sin(πnx) sinh(πny) + (πn)2 sin(πnx) sinh(πny) = 0

as desired.

(b) We impose the boundary conditions u = 0 at x = 0 and x = 1. The condition at

x = 0 is automatically satisfied (since sin(0) = 0). For the condition at x = 1 to be

satisfied, we need sin(nπ) = 0, which implies that n must be an integer.

(c) Note that the function u3(x, y) = sin(3πx) sinh(3πy) satisfies the boundary condition

u = 0 on every edge of the square except the top one (x = 0, x = 1, y = 0). We see

that the value on the top edge y = 1 is u3(x, 1) = sin(3πx)(sinh 3π), which is correct

apart from the constant factor sinh(3π). The solution is thus

u(x, y) =
sin(3πx) sinh(3πy)

sinh(3π)

(d) For un(x, y) = sin(nπx) sinh(πn(1 − y)), the derivatives with respect to x are the

same as those in part (a). The derivatives with respect to y are

∂un
∂y

= −πn sin(nπx) cosh(πn(1− y)),
∂2un

∂y2
= (πn)2 sin(nπx) sinh(πn(1− y))
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We thus conclude that

∂2un

∂x2
+
∂2un

∂y2
= −(πn)2 sin(nπx) sinh(πn(1− y)) + (πn)2 sin(nπx) sinh(πn(1− y)) = 0

as desired. Note that the solution u5(x, y) = sin(5πx) sinh(5π(1 − y)) satisfies the

boundary conditions u = 0 on each edge of the square except the bottom one (y = 0).

Since u5(x, 0) = sin(5πx) sinh(5π), we find that the solution is

u(x, y) =
sin(5πx) sinh(5π(1− y))

sinh(5π)

(e) Bonus: We simply need to piece together the solutions defined in parts (a) and (d).

Note that the functions

U1(x, y) =
sin(n1πx) sinh(n1π(1− y))

sinh(n1π)

U2(x, y) =
sinh(n2πx) sin(n2πy)

sinh(n2π)

U3(x, y) =
sin(n3πx) sinh(n3πy)

sinh(n3π)

U4(x, y) =
sinh(n4π(1− x)) sin(n4πy)

sinh(n4π)

all satisfy Laplace’s equation ∆u = 0, and are identically zero on three edges of the

unit square. For example, U1 = 0 on x = 0, x = 1 and y = 1, and U2 = 0 on x = 0,

y = 0 and y = 1. In addition, it is clear that

U1(x, 0) = sin(n1πx), U2(1, y) = sin(n2πy), U3(x, 1) = sin(n3πx), U4(0, y) = sin(n4πy)

so the functions individually satisfy the appropriate boundary conditions on each of

the four edges of the square. Since Laplace’s equation is linear, the complete solution

is

u(x, y) = U1(x, y) + U2(x, y) + U3(x, y) + U4(x, y).


