18.085, PROBLEM SET 6, DUE 7/25 (in class)

Question 1. (10 pts.) Cubic finite elements.

Consider the cubic finite elements $\phi_i^d(x)$ and $\phi_i^s(x)$ (where i = 0, 1, 2, 3) based at the meshpoints x = 0, 1/3, 2/3, 1. Which functions ϕ are dropped because of the given differential equations and associated boundary conditions? Explain your answers.

- (a) u''' = f(x) with boundary conditions u = u' = 0 at the ends x = 0 and x = 1.
- (b) -u'' = f(x) with boundary conditions u(0) = u(1) = 0.
- (c) -u'' = f(x) with boundary conditions u(0) = u'(1) = 0.
- (d) u''' = f(x) with boundary conditions u = u'' = 0 at the ends x = 0 and x = 1.

Hint: Recall that boundary conditions on u are *essential (Dirichlet)* and those on u' are *natural (Neumann)* for the elastic bar. For the bending beam, boundary conditions on u and u' are *essential* and those on higher derivatives are *natural*.

Question 2. (20 pts.) Laplace's equation and level curves.

Determine if the equations in parts (a)-(c) can be solved. Write a solution if one exists, and show your work. Otherwise, explain why it is not possible to find a solution.

(a)

$$\operatorname{div}\begin{pmatrix}\frac{\partial u}{\partial x}\\\frac{\partial u}{\partial y}\end{pmatrix} = y^2 - 3\lambda x - 1$$

(b) $\Delta u = 0$ on the unit disc with boundary conditions $u(1, \theta) = \cos 2\theta + \sin 6\theta + 1$ on the boundary of the disc.

(c)

$$\operatorname{div}\begin{pmatrix}-\frac{\partial s}{\partial y}\\\frac{\partial s}{\partial x}\end{pmatrix} = e^{x^2 - 3y}$$

(d) Find a family of curves S(x, y) = C that is everywhere orthogonal (perpendicular) to the level curves of $u(x, y) = e^{-y} \sin x$. (e) Bonus (5 pts.): The function u(x, y) = e^{-y} sin x and S(x, y) that you found in part (d) are the real and imaginary parts of a complex function. What is it?

Question 3. (20 pts) Laplace's equation on a square.

In this question, we solve Laplace's equation $\Delta u = 0$ on the unit square $R = [0, 1] \times [0, 1] = \{(x, y) : 0 \le x \le 1, 0 \le y \le 1\}.$

- (a) Verify that $u_n(x, y) = \sin(\pi nx) \sinh(\pi ny)$ solves Laplace's equation $\Delta u = 0$ for any real number *n*. (Hint: Recall that $\sinh x = (e^x e^{-x})/2$.)
- (b) We now impose the boundary condition u = 0 on the left and right edges of the square. For what values of n is $u_n(x, y)$ a solution?
- (c) Solve Laplace's equation $\Delta u = 0$ with the boundary condition $u = \sin 3\pi x$ on the top edge of the square, and u = 0 on the three remaining edges.
- (d) Verify that $u_n(x, y) = \sin(\pi nx) \sinh(\pi n(1-y))$ also solves Laplace's equation $\Delta u = 0$. Then solve Laplace's equation with the boundary condition $u = \sin 5\pi x$ on the bottom edge of the square, and u = 0 on the three remaining edges.
- (e) **Bonus (5 pts.):** Write the solution to Laplace's equation $\Delta u = 0$ on the unit square with boundary conditions $u = \sin(n_1\pi x)$ on the lower edge, $u = \sin(n_2\pi y)$ on the right edge, $u = \sin(n_3\pi x)$ on the upper edge, and $u = \sin(n_4\pi y)$ on the left edge, where n_i are integers.