
18.085: PROBLEM SET 5 SOLUTIONS

Question 1. (15 pts.) A hanging bar.

(a) w solves the equation

−dw

dx
= δ(x− 1/2), w(1) = 0(0.1)

As shown in class, the solution is

w(x) =

∫ 1

x
δ(s− 1/2) ds =

1 if x < 1/2

0 if x > 1/2
(0.2)

So w(x) is a step function, as shown in Figure 1.
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Figure 1. Solution to Question 1(a).

If you don’t want to use the solution provided in class, you can directly integrate

both sides of equation (0.1):

w(x) = −S(x− 1/2) + C
1



2

where S is a step function, and C is a constant to be determined. We now use the

boundary condition w(1) = 0 to get C = 1, so the solution is

w(x) = 1− S(x− 1/2)

This is equivalent to the solution (0.2).

(b) Since w(x) = c(x)u′(x), we use part (a) to find that

du

dx
=
w(x)

c(x)
=

2 if x < 1/2

0 if x > 1/2

This is shown in Figure 2.
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Figure 2. Solution to Question 1(b).

(c) We can use the formula for u(x) provided in class:

u(x) =

∫ x

0

w(s)

c(s)
ds
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We found the integrand w(s)/c(s) in part (b). If x < 1/2, we have

u(x) =

∫ x

0

w(s)

c(s)
ds =

∫ x

0
2 ds = 2x

If x > 1/2,we have

u(x) =

∫ x

0

w(s)

c(s)
ds =

∫ 1/2

0
2 ds+

∫ x

1/2
0 ds = 1

Combining these answers, we obtain the solution

u(x) =

2x if x < 1/2

1 if x > 1/2
(0.3)

This is shown in Figure 3.
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Figure 3. Solution to Question 1(c).
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Question 2. (35 pts.) Finite element method with hat functions.

(a) We need two hat functions φ1(x) and φ2(x). We do not need the half-hats, since we

have zero boundary conditions u(0) = u(1) = 0 at each end. The hat functions are

φ1(x) =


3x if 0 ≤ x ≤ 1/3,

2− 3x if 1/3 ≤ x ≤ 2/3,

0 otherwise

, φ2(x) =


3x− 1 if 1/3 ≤ x ≤ 2/3,

3− 3x if 2/3 ≤ x ≤ 1,

0 otherwise

The derivatives are

φ′1(x) =


3 if 0 < x < 1/3,

−3 if 1/3 < x < 2/3,

0 otherwise

, φ′2(x) =


3 if 1/3 < x < 2/3,

−3 if 2/3 < x < 1,

0 otherwise

Plots of the functions are shown in Figure 4, and their derivatives in Figure 5.
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Figure 4. Plots of the hat functions φ1(x) (solid) and φ2(x) (dashed) for
Question 2(a).

(b) We now find the matrix K. Recall that

Kij =

∫ 1

0
φ′i(x)φ′j(x) dx
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Figure 5. Plots of the derivatives of the hat functions φ1(x) (solid) and φ2(x)
(dashed) for Question 2(a).

Since the derivatives of φi(x) are constants on each interval, the integrals aren’t too

difficult:

K11 =

∫ 1

0
φ′1(x)2 dx =

∫ 1/3

0
32 dx+

∫ 2/3

1/3
(−3)2 dx = 6

It is clear that K22 = 6 as well. Moving on:

K12 =

∫ 1

0
φ′1(x)φ′2(x) dx =

∫ 1/3

0
3 · 0 dx+

∫ 2/3

1/3
3 · (−3) dx+

∫ 1

2/3
(−3) · 0 dx = −3

Since K is symmetric, K21 = −3 as well. The matrix K thus looks like

K =

 6 −3

−3 6


(c) Recall that the elements of the vector ~F are given by the formula

Fi =

∫ 1

0
f(x)φi(x) dx
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Beginning with φ1(x), we have

F1 =

∫ 1

0
xφ1(x) dx =

∫ 1/3

0
x · 3x dx+

∫ 2/3

1/3
x · (2− 3x) dx =

1

3
· 1

6
· 1

2
+

1

3
· 1

2
· 1

2
=

1

9

F2 =

∫ 1

0
xφ2(x) dx =

∫ 2/3

1/3
x · (3x− 1) dx+

∫ 1

2/3
x · (3− 3x) dx =

1

3
· 1

2
· 1

2
+

1

3
· 5

6
· 1

2
=

2

9

where we use the midpoint rule to do each integral. The vector ~F is thus

~F =

1/9

2/9


(d) We now solve the system K~U = ~F :

3 ·

 2 −1

−1 2

U1

U2

 =

1/9

2/9

⇒
U1

U2

 =

 2 −1

−1 2

−11/27

2/27


We now use the formula for the inverse of a 2× 2 matrix:a b

c d

−1 =
1

ad− bc

 d −b

−c a


to obtain U1

U2

 =
1

3

2 1

1 2

1/27

2/27

 =

4/81

5/81


Our solution is thus

U(x) =
4

81
φ1(x) +

5

81
φ2(x)(0.4)

A plot of this function is in Figure 6, together with the exact solution (which we

derive in part (d)). The code I used to make this plot may be found at the end of

this document.

(e) We now find the exact solution to the equation u′′ = −x with boundary conditions

u(0) = u(1) = 0. Integrating both sides, we obtain

u′ = −x
2

2
+ C
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Figure 6. Red curve shows the approximate solution U(x) derived in Ques-
tion 2(d), and the black curve shows the exact solution u(x) derived in Ques-
tion 2(e).

Integrating again, we obtain

u(x) = −x
3

6
+ Cx+D

The condition u(0) = 0 implies that D = 0, and u(1) = 0 implies that C = 1/6. We

thus obtain the exact solution

u(x) =
x− x3

6

Note that the approximate solution U(x) defined in (0.4) has the values U(1/3) = 4/81

and U(2/3) = 5/81 at the node points. It is easy to see that the exact solution assumes

the same values: u(1/3) = 8/(27 · 6) = 4/81 and u(2/3) = 10/(27 · 6) = 5/81.

To approximate the error, we let u be the vector corresponding to the exact solution

and U the vector corresponding to the approximate solution. As stated in the e-mail

hint, we use the command [a, b] = max(abs(u − U)) to determine the size of the

maximum error (a) and its location (xv(b)). Using the vector of x-values xv = 0 :

.01 : 1, we find that the maximum error is 0.0016 at x = 0.84.
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Bonus: To find the precise answer, we define the function E(x) = U(x) − u(x).

Note that the approximate solution U(x) found in part (d) has the form

U(x) =



4
27x if 0 ≤ x ≤ 1/3

x
27 + 3

81 if 1/3 ≤ x ≤ 2/3

− 5
27x+ 5

27 if 2/3 ≤ x ≤ 1

0 otherwise

We thus find that

E(x) =


−x/54 + x3/6 if 0 ≤ x ≤ 1/3

−7x/54 + 3/81 + x3/6 if 1/3 ≤ x ≤ 2/3

−19x/54 + 5/27 + x3/6 if 2/3 ≤ x ≤ 1

To find the maximum, we take the derivative of E(x):

dE

dx
=


−1/54 + x2/2 if 0 ≤ x ≤ 1/3

−7/54 + x2/2 if 1/3 ≤ x ≤ 2/3

−19/54 + x2/2 if 2/3 ≤ x ≤ 1

The extrema of E(x) correspond to the zeros of dE/dx:

−1/54 + x2/2 = 0⇒ x = 1/
√

27

−7/54 + x2/2 = 0⇒ x =
√

7/27

−19/54 + x2/2 = 0⇒ x =
√

19/27

Substituting these values back into the function E(x), we find

E(1/
√

27) ≈ −0.0024, E(
√

7/27) ≈ −0.0070, E(
√

19/27) ≈ −0.0116

We thus find that the maximum error occurs at x =
√

19/27 ≈ 0.8389, and that it

has the value |E(
√

19/27)| ≈ 0.0116.
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Question 3. (35 pts.) Finite element method with bubble functions.

(a) We will use three bubble functions φ3(x), φ4(x) and φ5(x), defined as

φ3(x) =

−36x(x− 1/3) if 0 ≤ x ≤ 1/3

0 otherwise
, φ4(x) =

−36(x− 1/3)(x− 2/3) if 1/3 ≤ x ≤ 2/3

0 otherwise

φ5(x) =

−36(x− 2/3)(x− 1) if 2/3 ≤ x ≤ 1

0 otherwise

The derivatives are

φ′3(x) =

−36(2x− 1/3) if 0 ≤ x ≤ 1/3

0 otherwise
, φ′4(x) =

−36(2x− 1) if 1/3 ≤ x ≤ 2/3

0 otherwise

φ′5(x) =

−36(2x− 5/3) if 2/3 ≤ x ≤ 1

0 otherwise

Plots of the bubble functions are shown in Figure 7, and their derivatives in Figure 8.
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Figure 7. Question 3(a): plots of the bubble functions φ3(x) (solid), φ4(x)
(dashed) and φ5(x) (dot-dash).
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Figure 8. Question 3(a): plots of the derivatives of the bubble functions
φ′3(x) (solid), φ′4(x) (dashed) and φ′5(x) (dot-dash).

(b) We now find the matrix K. Note that K11,K12,K22 are the same as in Question

2(b). Letting h = 1/3, we have

K33 =
16

h4

∫ h

0
(2x− h)2 dx =

16

h4

(
h

6
· h2 +

4h

6
· 0 +

h

6
· h2
)

=
16

3h

where we use Simpson’s rule to evaluate the integral. (Recall that Simpson’s rule is

exact for quadratics.) We continue:

K44 =
16

h4

∫ 2h

h
(2x− 3h)2 dx =

16

h4

(
h

6
· h2 +

h

6
· h2
)

=
16

3h

K55 =
16

h4

∫ 3h

2h
(2x− 5h)2 dx =

6

h4

(
h

6
· h2 +

h

6
· h2
)

=
16

3h

Note that K15 = K23 = K34 = K35 = K45 = 0 since the appropriate functions do not

overlap (that is, their product is always zero). We continue:

K13 = − 4

h3

∫ h

0
(2x− h) dx = 0

K14 =
4

h3

∫ 2h

h
(2x− 3h) dx = 0
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Both integrals follow from the symmetry of the integrand. The same is true for the

rest of the matrix elements (they are all zero), so the matrix K is

K =



6 −3 0 0 0

−3 6 0 0 0

0 0 16 0 0

0 0 0 16 0

0 0 0 0 16


(c) We now compute the vector ~F :

F3 =

∫ 1

0
xφ3(x) dx = − 4

h2

∫ h

0
x2(x− h) dx = − 4

h2

(
h4

4
− h4

3

)
=
h2

3

F4 =

∫ 1

0
xφ4(x) dx = − 4

h2

∫ 2h

h
x(x− h)(x− 2h) dx = − 4

h2

(
h4

4
− h4

2

)
= h2

F5 =

∫ 1

0
xφ5(x) dx = − 4

h2

∫ 3h

2h
x(x− 2h)(x− 3h) dx = − 4

h2

(
h4

4
+
h4

3
− h4

)
=

5h2

3

The vector ~F thus has the form

~F =



1/9

2/9

1/27

1/9

5/27


(d) We know solve the equation K~U = ~F , or

6 −3 0 0 0

−3 6 0 0 0

0 0 16 0 0

0 0 0 16 0

0 0 0 0 16





U1

U2

U3

U4

U5


=



1/9

2/9

1/27

1/9

5/27


(0.5)
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We found U1 = 4/81 and U2 = 5/81 in Problem 2(d), and the remaining are easy to

find since the lower 3× 3 block of K is diagonal:

U3 =
1

27 · 16
, U4 =

1

9 · 16
, U5 =

5

27 · 16

The approximate solution is thus

U(x) =
4

81
φ1(x) +

5

81
φ2(x) +

1

27 · 16
φ3(x) +

1

9 · 16
φ4(x) +

5

27 · 16
φ5(x)

This solution is plotted in Figure 9 (red circles). The code I used to make this plot

may be found at the end of this document.

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

x

u(
x)

Figure 9. Question 3(d) and 3(e): Plot of the approximate solution (red
circles) and exact solution (black line) using bubble functions.

(e) The exact solution is shown in Figure 9. Note that the inclusion of bubble functions

improves the accuracy of the solution.

We find that the maximum error is at x ≈ 0.93 and has size ≈ 0.0003, a big

improvement over the error using hat functions found in Question 2(e).
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Question 4. (15 pts.) A hanging beam. As shown in class, the solution for this

problem has the form

u(x) =


A
6 x

3 + B
2 x

2 + Cx+D if x < 0,

A+1
6 x3 + B

2 x
2 + Cx+D if x > 0

(a) We impose the boundary conditions u = u′ = 0 and x = 1 and x = −1. The condition

u(−1) = 0 implies that

u(−1) = 0 ⇒ −A
6

+
B

2
− C +D = 0

u(1) = 0 ⇒ A+ 1

6
+
B

2
+ C +D = 0

u′(−1) = 0 ⇒ A

2
−B + C = 0

u′(1) = 0 ⇒ A+ 1

2
+B + C = 0

After some algebra, we find that the solution is

A = −1/2, B = −1/4 C = 0, D = 1/24

The solution is thus

u(x) =

−
x3

12 −
x2

8 + 1
24 if x ≤ 0

x3

12 −
x2

8 + 1
24 if x > 0

A graph of the solution is shown in Figure 10.

(b) We now solve the problem with the boundary conditions u = u′′ = 0 at x = 1 and

x = −1.

u(−1) = 0 ⇒ −A
6

+
B

2
− C +D = 0

u(1) = 0 ⇒ A+ 1

6
+
B

2
+ C +D = 0

u′′(−1) = 0 ⇒ −A+B = 0

u′′(−1) = 0 ⇒ A+ 1 +B = 0
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Figure 10. Solution to Question 4(a).

The last two equations immediately imply that B = −1/2 and A = −1/2. Substitut-

ing this into the first two equations, we find that

−C +D =
1

6

C +D =
1

6

This implies that C = 0 and D = 1/6. The solution is thus

u(x) =

−
x3

12 −
x2

4 + 1
6 if x ≤ 0

x3

12 −
x2

4 + 1
6 if x > 0

A graph of the solution is shown in Figure 11.
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Figure 11. Solution to Question 4(b).

Code used to generate plots in Question 2 and 3.

function Pset5Q3

K = [6 -3 0 0 0; -3 6 0 0 0; 0 0 16 0 0; 0 0 0 16 0; 0 0 0 0 16];

F = [1/9 2/9 1/27 1/9 5/27]’;

U = K\F;

disp(U)

disp([4/81 5/81 1/(27*16) 3/(27*16) 5/(27*16)])

xv = 0:.01:1;

usoln = U(1)*phi1(xv) + U(2)*phi2(xv) + U(3)*phi3(xv) + U(4)*phi4(xv)+U(5)*phi5(xv);

u2soln = 1/27*(4/3*phi1(xv) + 5/3*phi2(xv));

figure(20)

plot(xv,(xv-xv.^3)/6,’-k’,’LineWidth’,3)

hold on

plot(xv,usoln,’o-r’)
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hold on

plot(xv,u2soln,’-r’,’LineWidth’,3)

grid on

[a,b] = max(abs(usoln-(xv-xv.^3)/6));

disp([a xv(b)])

function out = phi1(xv)

h = 1/3;

out = zeros(1,length(xv));

for ind = 1:length(xv)

x = xv(ind);

if (x <= h)

out(ind) = x/h;

elseif (x > h && x < 2*h)

out(ind) = 2-x/h;

end;

end;

function out = phi2(xv)

h = 1/3;

out = zeros(1,length(xv));

for ind = 1:length(xv)

x = xv(ind);

if (x >= h && x < 2*h)

out(ind) = x/h-1;

elseif (x >= 2*h && x < 3*h)

out(ind) = 3-x/h;

end;

end;
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function out = phi3(xv)

h = 1/3;

out = zeros(1,length(xv));

for ind = 1:length(xv)

x = xv(ind);

if (x < h)

out(ind) = -4*x/h^2*(x-h);

end;

end;

function out = phi4(xv)

h = 1/3;

out = zeros(1,length(xv));

for ind = 1:length(xv)

x = xv(ind);

if (x >=h && x < 2*h)

out(ind) = -4/h^2*(x-h)*(x-2*h);

end;

end;

function out = phi5(xv)

h = 1/3;

out = zeros(1,length(xv));

for ind = 1:length(xv)

x = xv(ind);

if (x >=2*h && x < 3*h)

out(ind) = -4/h^2*(x-2*h)*(x-3*h);

end;

end;


