
18.085, PROBLEM SET 3 SOLUTIONS

Question 1. (25 pts.) Resonance and practice with (complex) exponentials.
In this question, to be done entirely by hand, i =

√
−1, the unit imaginary number. Recall

that the equation for one mass (of mass m) and one spring (of spring constant c), where u is
the position of the mass away from equilibrium, is (no forcing):

(0.1) mu′′ + cu = 0

where the prime ′ means a derivative in time, and u = u(t) is a function of time only (no
space). We omit initial conditions here.

a) (5 pts.) Plug in u1 = sinωt to get −mω2 sinωt+c sinωt = 0 which implies ω =
√
c/m.

You get the same result using u2 = cosωt.
b) (4 pts.) The mass oscillates SLOWER when it is heavier: ω =

√
c/m is smaller for

largerm. The mass oscillates FASTER when the spring is stiffer (larger c): ω =
√
c/m

is larger for larger c.
c) (5 pts.) Plug in u = ert to get mr2ert + cert = 0, which implies r =

√
−c/m =

±i
√
c/m. That is, u1 = ei

√
c/mt and u2 = e−i

√
c/mt are the solutions to (0.1).

d) (3 pts.) r1 = iω, r2 = −iω.
e) (BONUS 5 pts.) Try again a guess of v = est in mv′′ + bv′ + cv = 0 to get ms2est +
bsest + cest = 0, which implies

s1,2 =
−b±

√
b2 − 4mc

2m
.

f) (BONUS 5 pts.) Solutions are vj = esjt. The first case is when the discriminant
b2 − 4mc is positive, which leads to a real, negative value of sj for both j = 1 and

j = 2 (since m, c > 0,
√
b2 − 4mc < b). The second case is when the discriminant

b2 − 4mc is negative, which leads to values of sj with a negative real part of −b/2m
and an imaginary part. The negative real part of the sj ’s, in both cases, lead to decay
in time. The imaginary part of sj , if it exists, leads to oscillations (modulated by the
decay). Hence this is indeed as expected when damping is added.

g) (5 pts.) Resonance! Try w = Ater1t as a guess for the solution of mw′′+cw = er1t. We
obtain w′ = Atr1e

r1t+Aer1t by the chain rule. Also, w′′ = Atr21e
r1t+Ar1e

r1t+Ar1e
r1t.

Hence mw′′+cw = Aer1t(2mr1+mtr21+ct) = er1t. Recall r1 = i
√
c/m, so that in fact

this reduces to A(2i
√
cm−mtc/m+ ct) = 1, such that we get A = 1/2i

√
cm. Notice

how the t’s cancel so that A is a constant! This should happen, since we assumed A
to be a constant when we took the derivative of it! What this means is the solution
has a specific amplitude (cannot be any amplitude as before), multiplied by a factor
of t, multiplied by the same complex exponential as before.

h) (3 pts.) The solution is w = Atei
√

c/mt, so it grows as time goes to infinity because of
the t factor in front, while still oscillating because of the complex exponential factor.

The phenomenon in g) and h), of forcing the system at its natural frequency, is
called resonance. Sometimes it’s bad (your mass oscillates wildly until the spring
breaks), sometimes it’s good (your radio tuner only amplifies the exact frequency
corresponding to the station you wish to listen to).

1



2

Question 2. (25 pts.) Least squares, normal equations, matrix conditioning.
Our data fits exactly a degree 12 polynomial (in practice, you would not know that), but

the data is noisy. This polynomial that fits our “true” data (without the observation error)
is

p(x) = 5 + 4x− 7x2 + 1x3 + 0x4 − 2x5 + 4.9x6 − 3x7 + 0.5x8 + 1x9 + 3x10 − 2x11 + 2x12.

Since in practice we would not know this p, we will try to fit our data to a polynomial of
arbitrary degree, say 14 (this means that n = 15, a nice round number).

We evaluate the data at m = 100 equally-spaced intervals in the [0, 1] interval, so that
we observe at times tj = j ∗ h where h = 1/(m + 1), j = 1, . . . ,m. This means we have m
observations, that we need to fit as closely as possible to a polynomial of degree 14 (n = 15).

a) (5 pts.) The matrix A can be constructed column by column using the following
(other answers possible). Its condition number is very bad, on the order of 1010!

m=100;n=15;t=(1:m)’/(m+1);A=[];

for i=1:n, A=[A t.^(i-1)];end

b) (5 pts.) In Matlab: u=[5 4 -7 1 0 -2 4.9 -3 0.5 1 3 -2 2 0 0]’; b=A*u;

c) (5 pts.) But the noise is not 0, so our b̃, which is close to ~b but with small observation
error, will be, again in Matlab:

btilda=b+(10^(-12))*rand(m,1);

The relative error in ~b is (other answers possible, such as norm(btilda-b)/norm(b)):
sqrt(((btilda-b)’*(btilda-b))/(b’*b)), which is on the order of 10−13. We

expect such a small error in ~b since the noise was pretty small.
d) (5 pts.) Unfortunately, this error will grow when we solve the normal equations. The

best fit û using the normal equations is un=(A’*A)\(A’*btilda); (or un=inv(A’*A)*(A’*btilda);),
and the relative error in the solution is sqrt(((un-u)’*(un-u))/(u’*u)), which is

about 3. That’s about a factor of 1013 larger than the original error we had in ~b! In
fact, Matlab probably warned you the result would be bad by printing a message.
Note: some of you did un=inv(A’*A)*A’*btilda; instead. What this does is finds
the inverse, multiplies it by matrix A’ then by vector btilda. This is more work (i.e.,
more operations on the computer) because we are multiplying two matrices together,
then that matrix with a vector, instead of multiplying A’ with btilda then multiply-
ing that vector with the inverse matrix. I didn’t take off any points since we haven’t
talked about that, but that’s something for you to think about.

e) (5 pts.) We try uc=A\btilda in Matlab, and the error sqrt(((uc-u)’*(uc-u))/(u’*u))
is better, on the order of 10−5. Still a factor of about 107 larger than the original

error we had in ~b, but not as bad as with using the normal equations.

There are a few lessons to be learned here! First, the least squares matrix for polynomial
fitting on an equispaced grid in t has huge condition number, which leads to large error growth.
Instead, if you must do polynomial fitting, use Chebyshev grids (in chapter 4 of book). Or,
fit to a polynomial with smaller degree. If we had used a smaller n in this example, the
conditioning of A would not have been quite so bad. Second, the normal equations have even
worse conditioning than you would think (mainly because we invert ATA instead of just A),
but there are ways around this as we see in e).



3

Question 3. (25 pts.) Finite differences in time.
Here is the new file pset3_3.m. Line 16 never changes, but line 17 depends on which

question we are doing, so subsequent lines can be commented in or out.

% pset3_3_sol.m

% Solving the equation for one mass and one spring

%

T=10*pi;

n=2^6-1;

dt=T/(n+1);

u=zeros(1,n+2); % u(j) corresponds to time (j-i)*h

v=u; % v(j) corresponds to time (j-i)*h

u(1)=1; % initial condition, u(t=0)=1

v(1)=0; % initial condition, v(t=0)=0

for j=1:n+1

u(j+1)=u(j)+dt*v(j); % advance u by one time step

v(j+1)=v(j)+dt*(-u(j)); % advance v, Forward Euler for a), b), c)

% v(j+1)=v(j)+dt*(-u(j+1)); % advance v, Leap-Frog for d), e), f)

% v(j+1)=v(j)+dt*(.1-u(j+1)); % advance v, Leap-Frog and forcing for g)

% v(j+1)=v(j)+dt*(cos(j*dt)-u(j+1)); % advance v, Leap-Frog and forcing for h)

end

disp(sqrt((u(n+2)-u(1))^2+(v(n+2)-v(1))^2)); % error at final t=T

% plot phase plane

plot(u,v,’-o’); axis equal; axis tight; grid on

xlabel(’u’);ylabel(’v’);

a) (3 pts.) See above for lines 16-17, Forward Euler.
b) (3 pts.) We try different values of n and obtain the following plot, figure 1, of the

error. The loglog plot has a slope of -1 as expected from the accuracy of O(∆t) of
Forward Euler.

c) (3 pts.) We have the solution plotted in the phase plane in Figure 2 for n = 31. We
see that the solution grows in time, instead of remaining on the unit circle. We expect
this from Forward Euler, which adds energy to the solution, or is unstable.

d) (3 pts.) See file pset3_3.m above for Leap-Frog.
e) (3 pts.) We try different values of n and obtain the following plot, figure 3, of the

error. The loglog plot has a slope of -2 as expected from the accuracy of O(∆t2) of
Leap-Frog.

f) (3 pts.) We have the solution plotted in the phase plane in Figure 4 for n = 31. We
see that the solution is on an ellipse and stays pretty close to the unit circle. It also



4

100 101 102 103
10−2

10−1

100

101

n

er
ro

r

Figure 1. Error in Forward Euler.

−1 −0.5 0 0.5 1 1.5

−1

−0.5

0

0.5

1

1.5

u

v

Figure 2. Solution using Forward Euler.

ends, at t = T , pretty close to where it should be, (u, v) = (1, 0). We expect this from
Leap-Frog, which conserves energy over the long term, and is unstable.

Now we add forcing, so we solve u′′ + u = f(t). This means that, again, u′ = v,
but now v′ = u′′ = f(t)−u. Hnce, when we use a backward first order approximation
for v′, we obtain:

vj+1 − vj
∆t

= f(tj+1)− uj+1.



5

100 101 102 103
10−4

10−3

10−2

10−1

100

n

er
ro

r

Figure 3. Error in Leap-Frog.

−1 −0.5 0 0.5 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

u

v

Figure 4. Solution using Leap-Frog.

Notice how function f needs to be evaluated at the same time step as u is. Then,
this gives vj+1 = vj + ∆t(f(tj+1)− uj+1).

g) (BONUS 5 pts.) Let f(t) = 1/10, a constant force, say gravity. We modify file
pset3_3.m as above. The solution again (see figure 5) follows an ellipse, but staying
close to a circle of radius .9 instead of 1, and of center (.1, 0) instead of 0. Optional:
you can understand this as gravity changing the equilibrium position of the mass from



6

u = 0 to u = .1. Thus, when we pull the mass to u = 1 and let it go, we pulled it up
to an amplitude of .9 only, so it will oscillate with an amplitude of .9.

−0.5 0 0.5 1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

u

v

Figure 5. Solution using Leap-Frog, constant forcing.

h) (7 pts.) Now let f(t) = cos(t): we are forcing the system at its natural frequency!
We modify file pset3_3.m as above. Now the solution grows as time grows. This is
explained by the phenomenon of resonance we saw in question 1. See figure 6.

−2 −1.5 −1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

u

v

Figure 6. Solution using Leap-Frog, forcing at natural frequency.



7

Question 4. (25 pts.) Kirchhoff’s Laws.

a) Let Di be the ith element of the diagonal of ATA. Recall that Di is the number of
edges that meet at node i. We write the number of edges connecting to each node of
a 5× 5 square grid in matrix form:

G =


2 3 3 · · ·
3 4 4 · · ·
3 4 4 · · ·
...

...
...

→


2 3 3 3 2
3 4 4 4 3
3 4 4 4 3
3 4 4 4 3
2 3 3 3 2


Note that we only really need to determine the upper left 3 × 3 block of G, as the

remaining elements follow from the symmetry of the square grid. The diagonal ~D of
ATA is a vector of length 25, obtained from reading the elements of G by row:

~D =
(
2 3 3 3 2 3 4 4 4 · · ·

)
Note that L = ATA has a total of N4 = 25 · 25 = 625 elements. To determine the
number of nonzero elements, note first that the diagonal elements (N of them) are
nonzero. For i 6= j, recall that Lij = −1 if nodes i and j are connected, and zero

otherwise. Since Di is the number of edges meeting at node i, the sum
∑N2

i=1Di = 80
is the number of (−1)’s in the matrix L. So the number of zero elements is

625︸︷︷︸
elements in L

−

 80︸︷︷︸
(−1)’s

+ 25︸︷︷︸
diagonal elements

 = 520

b) As we saw in lecture, we can eliminate ~w from the governing equations to obtain

ATCA~u = ATC~b− ~f

Since the resistances are all 1, D is the identity matrix C = I, and the absence of

external voltages implies that ~b = ~0. We thus need to solve the equation

ATA~u = −~f
The node at the center of the grid has index bN2/2c + 1. Since it is grounded, its
neighbor to the right has the same index in the new labeling, so we set the current
source f

(
bN2/2c+ 1

)
= −1. The grid resistance at this node is u

(
bN2/2c+ 1

)
. This

is computed in the following Matlab code:

Nv = 3:2:61;

nextv = zeros(1,length(Nv));

for indN = 1:length(Nv)

N = Nv(indN);

B = toeplitz([2 -1 zeros(1,N-2)]);

B(1,1) = 1;

B(N,N) = 1;

L = kron(B,eye(N)) + kron(eye(N),B);

grnd = floor(N^2/2)+1;

L(grnd,:) = [];



8

L(:,grnd) = [];

K = L;

fnext = zeros(N^2-1,1);

fnext(grnd) = -1;

unext = K\(-fnext);

nextv(indN) = unext(grnd);

end;

figure(1)

plot(Nv,nextv,’o-b’)

The plot of grid resistance as a function of N is shown in Figure 7.

0 10 20 30 40 50 60 70
0.48

0.5

0.52

0.54

0.56

0.58

0.6

N

ne
ar

es
t−

ne
ig

hb
or

 g
rid

 r
es

is
ta

nc
e

Figure 7. Solution to Question 4, part (b).

c) Figure 7 suggest that the nearest neighbor grid resistance approaches 1/2 as N →∞.
d) We repeat part (b), this time using the following code:

Nv = 3:2:61;

diagv = zeros(1,length(Nv));

for indN = 1:length(Nv)

N = Nv(indN);

B = toeplitz([2 -1 zeros(1,N-2)]);

B(1,1) = 1;

B(N,N) = 1;

L = kron(B,eye(N)) + kron(eye(N),B);

grnd = floor(N^2/2)+1;



9

L(grnd,:) = [];

L(:,grnd) = [];

K = L;

fdiag = zeros(N^2-1,1);

fdiag(grnd+N) = -1;

udiag = K\(-fdiag);

diagv(indN) = udiag(grnd+N);

end;

figure(1)

plot(Nv,diagv,’o-b’)

The plot of grid resistance as a function of N is shown in Figure 8. It can be shown
that the gird resistance approaches 2/π as N →∞.

0 10 20 30 40 50 60 70

0.65

0.7

0.75

0.8

0.85

0.9

0.95

N

ne
ar

es
t d

ia
go

na
l n

ei
gh

bo
r 

gr
id

 r
es

is
ta

nc
e

Figure 8. Solution to Question 4, part (d).

Bonus question! (10 pts.) Leap-frog revisited.
In question 3, we use the Leap-Frog method with the first-order system formulation of

u′′ + u = 0, that is, we use Leap-Frog on the equations u′ = v and v′ = −u. Eliminate the
vj ’s from this Leap-Frog method to obtain the Leap-Frog method that solves directly the
equation u′′ + u = 0:

Leap-Frog on u′′ + u = 0 is
uj+1 − 2uj + uj−1

∆t2
= −uj .



10

We start with the Leap-Frog equations for the first order system:

(0.2) uj+1 = uj + ∆t vj

(0.3) vj+1 = vj −∆t uj+1

We can also evaluate those expressions at a different j:

(0.4) uj = uj−1 + ∆t vj−1

(0.5) vj = vj−1 −∆t uj

We rewrite equation (0.2) using equation (0.5):

uj+1 = uj + ∆t (vj−1 −∆t uj)

and subtract from that equation (0.4) to get:

uj+1 − uj = uj − uj−1 −∆t2 uj ,

which we rewrite as
uj+1 − 2uj + uj−1

∆t2
= −uj ,

from which we easily recover the Leap-Frog method for the second order equation.


