YOUR NAME: \qquad

YOUR SCORE: __ $/ 100+\ldots$ extra credit

THE QUIZ IS OPEN BOOK, OPEN NOTES AND NO CALCULATORS

GRADING:

(1) 1 . \qquad
(2) $\mathbf{2}$. \qquad $+$ \qquad BONUS POINTS
(3) 3. \qquad
(4) 4.
(1) (20 points.)

The dft of the signal x is

$$
\hat{x}=\left(\begin{array}{c}
3 \\
0 \\
2 i \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
2 i \\
0
\end{array}\right)
$$

What signal is sampled in x ?
Sketch the real and the imaginary part of x. (With our usual notation, here we have that $\mathrm{N}=11$).
(2) $(15+15+10$ points $+10+10$ bonus points.) Which of these equations can be solved? If you can solve them, then show a solution, otherwise explain why it is not possible to find a solution.
a)

$$
\operatorname{div}\binom{\frac{\partial u}{\partial x}}{\frac{\partial u}{\partial y}}=y^{2}-3 \lambda x-1,
$$

where λ is a fixed real parameter.
b) The Laplace equation on the unit circle, with boundary condition,

$$
-\Delta u=0, u(1, \theta)=\cos (2 \theta)+\sin (6 \theta)+1 .
$$

c)

$$
\operatorname{div}\binom{-\frac{\partial s}{\partial y}}{\frac{\partial s}{\partial x}}=e^{x^{2}-3 y},
$$

Caveat: the next two are bonus questions.
d1) Find a family of curves $s(x, y)=C$ that is everywhere orthogonal to the family of curves $u(x, y)=e^{-y}(\sin (x))$.
d2) Can you tell for which complex function the function $u(x, y)$ in d 1$)$ is the real part?
(3) (15 points). Let $f(x)=-|x|+g(x)$ on $[-\pi, \pi]$, where $g(x)$ is defined as follows,

$$
g(x)=\left\{\begin{aligned}
12 & \text { for } x \in[0, \pi] \\
-2 & \text { for } x \in(-\pi, 0) .
\end{aligned}\right.
$$

Find the Fourier series of $f(x)$, when f is extended periodically to the real line, by the rule $f(2 \pi+x)=f(x)$.
(4) $(5+5+5+5+5$ points)
a) Consider the function $f(x)=e^{-x}, x \in[-\pi, \pi)$ which is extended periodically to the real line, by the rule $f(2 \pi+x)=f(x)$. Draw the graph in $[-2 \pi, 2 \pi]$. The functions satisfies the following differential equation

$$
\begin{equation*}
\frac{d}{d x} f(x)+f(x)=g(x) \tag{0.1}
\end{equation*}
$$

for some function $g(x):[-\pi, \pi] \rightarrow \mathbb{R}$. Find such g.
b) Compute the complex Fourier series of $f(x)$,

$$
f(x)=\sum_{k \in \mathbb{Z}} d_{k} e^{i k x}
$$

in the standard way.
c) Try to compute the Fourier coefficients of f using the differential equation (0.1). Do you get the same result as in part b?
d) Explain the reason for the answer you gave in part c.
e) Compute

$$
\sum_{k \in \mathbb{Z}}\left|d_{k}\right|^{2} .
$$

