YOUR NAME: \qquad

YOUR SCORE: __ $/ 100+\ldots$ extra credit

THE QUIZ IS OPEN BOOK, OPEN NOTES AND NO CALCULATORS

GRADING:

(1) 1 . \qquad
(2) $\mathbf{2}$. \qquad $+$ \qquad BONUS POINTS
(3) 3. \qquad
(4) 4.
(1) (20 points.)

The dft of the signal x is

$$
\hat{x}=\left(\begin{array}{c}
3 \\
0 \\
2 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
2 \\
0
\end{array}\right)
$$

What signal is sampled in x ?
Sketch the real and the imaginary part of x. (With our usual notation, here we have that $\mathrm{N}=11$). Solution:

As

$$
x=G_{N} \hat{x},
$$

it follows that

$$
x=\sum_{k=0}^{N-1} \hat{x}_{k} v_{k}=3 v_{0}+2 v_{2}+2 v_{9}
$$

$3\left(\begin{array}{c}1 \\ 1 \\ 1 \\ \vdots \\ 1\end{array}\right)+2\left(\begin{array}{c}1 \\ e^{1 \cdot 2 \cdot 2 \pi i / 11} \\ e^{2 \cdot 2 \cdot 2 \pi i / 11} \\ \vdots \\ e^{10 \cdot 2 \cdot 2 \pi i / 11}\end{array}\right)+2\left(\begin{array}{c}1 \\ e^{-1 \cdot 2 \cdot 2 \pi i / 11} \\ e^{-2 \cdot 2 \cdot 2 \pi i / 11} \\ \vdots \\ e^{-10 \cdot 2 \cdot 2 \pi i / 11}\end{array}\right)=\left(\begin{array}{c}3+4 \\ 3+4 \cos \left(\frac{2 \cdot 2 \pi}{4 \cdot 1}\right. \\ 3+4 \cos \left(\frac{4}{11}\right) \\ \vdots \\ 3+4 \cos \left(\frac{20 \cdot 2 \pi}{11}\right)\end{array}\right)$.
The graph of the real part is the graph of a $f(t)=3+4 \cos (2 t)$ and the points we are sampling are those corresponding to $x=0, \frac{2 \pi}{11}, \frac{2 \cdot 2 \pi}{11}, \ldots, \frac{10 \cdot 2 \pi}{11}$.

(2) $(15+15+10$ points $+10+10$ bonus points.) Which of these equations can be solved? If you can solve them, then show a solution, otherwise explain why it is not possible to find a solution.
a)

$$
\operatorname{div}\binom{\frac{\partial u}{\partial x}}{\frac{\partial u}{\partial y}}=x^{2}-3 \lambda y,
$$

where λ is a fixed real parameter.
b) The Laplace equation on the unit circle, with boundary condition,

$$
-\Delta u=0, u(1, \theta)=\sin (2 \theta)+\cos (6 \theta)+1 .
$$

c)

$$
\operatorname{div}\binom{-\frac{\partial s}{\partial y}}{\frac{\partial s}{\partial x}}=\log x^{2}-3 y
$$

Solution:

a) A solution to

$$
\operatorname{div}\binom{\frac{\partial u}{\partial x}}{\frac{\partial u}{\partial y}}=\Delta u=x^{2}-3 \lambda y
$$

is given by $u(x, y)=\frac{x^{4}}{12}-\lambda \frac{x^{y}}{2}$.
b) A solution to

$$
-\Delta u=0, u(1, \theta)=\sin (2 \theta)+\cos (6 \theta)+1 .
$$

is given by

$$
u(r, \theta)=r^{2} \sin (2 \theta)+r^{6} \cos (6 \theta)+1
$$

as shown in the book at page .
c) The equation

$$
\operatorname{div}\binom{-\frac{\partial s}{\partial y}}{\frac{\partial s}{\partial x}}=\log x^{2}-3 y
$$

has no solution, since

$$
\operatorname{div}\binom{-\frac{\partial s}{\partial y}}{\frac{\partial s}{\partial x}}=-\frac{\partial^{2} s}{\partial x \partial y}+\frac{\partial^{2} s}{\partial y \partial x}=0 .
$$

Caveat: the next two are bonus questions.
d1) Find a family of curves $s(x, y)=C$ that is everywhere orthogonal to the family of curves $u(x, y)=e^{x}(\cos (y))$.
d2) Can you tell for which complex function the function $u(x, y)$ in d 1$)$ is the real part?

Solution:

d1) As $\operatorname{div}(\nabla u)=e^{x} \cos (y)-e^{x} \cos (y)=0$, then u admits a stream function s, which is determined by the two conditions

$$
\begin{aligned}
\frac{\partial s}{\partial y} & =\frac{\partial u}{\partial x}=e^{x} \cos (y) \\
-\frac{\partial s}{\partial x} & =\frac{\partial u}{\partial y}=-e^{x} \sin (y)
\end{aligned}
$$

Then,
$s=\int \frac{\partial s}{\partial y} d y+F(x)=\int e^{x} \cos (y) d y+F(x)=e^{x} \sin (y)+F(x)$,
$s=\int \frac{\partial s}{\partial x} d x+G(y)=\int e^{x} \sin (y) d x+G(y)=e^{x} \sin (y)+G(y)$.
Hence $s(x, y)=e^{x} \sin (y)$ is a solution.
d2) The complex function we are looking for has u as real part and s as imaginary part, hence

$$
\begin{gathered}
h(x, y)=u(x, y)+i s(x, y)=e^{x} \cos (y)+i e^{x} \sin (y) \\
=e^{x}(\cos (y)+i \sin (y))=e^{z}
\end{gathered}
$$

where $z=x+i y$.
(3) (15 points). Let $f(x)=|x|-g(x)$ on $[-\pi, \pi]$, where $g(x)$ is defined as follows,

$$
g(x)=\left\{\begin{aligned}
15 & \text { for } x \in[0, \pi] \\
-1 & \text { for } x \in(-\pi, 0) .
\end{aligned}\right.
$$

Find the Fourier series of $f(x)$, when f is extended periodically to the real line, by the rule $f(2 \pi+x)=f(x)$.

Solution:

We can rewrite g as $g(x)=7+8 S W(x)$, where

$$
S W(x)=\left\{\begin{aligned}
1 & \text { for } x \in[0, \pi] \\
-1 & \text { for } x \in(-\pi, 0) .
\end{aligned}\right.
$$

The Fourier series of $S W(x)$, that we saw in class multiple times, is

$$
\frac{4}{\pi} \sum_{\mathbb{N} \ni k, k o d d} \frac{\sin (k x)}{k},
$$

hence the Fourier series of $g(x)$ is

$$
g(x)=7+\frac{32}{\pi} \sum_{\mathbb{N} \ni k, k o d d} \frac{\sin (k x)}{k} .
$$

$h(x)=|x|$ is an even function, hence its Fourier series will be a series of cosines, $\sum_{k=0}^{\infty} c_{k} \cos (k x)$. Let us compute it.

$$
\begin{array}{cc}
c_{0} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi}-|x| d x=\frac{\pi}{2} \\
c_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi}-|x| \cos (k x) d x=\left\{\begin{aligned}
0 & \text { for } \mathrm{k} \text { even } \\
-\frac{4}{\pi k^{2}} & \text { for } \mathrm{k} \text { odd. }
\end{aligned}\right.
\end{array}
$$

Hence the Fourier series of $f(x)$ is

$$
f(x)=\frac{\pi}{2}-7+\sum_{\mathbb{N} \ni k, k o d d}-\frac{32 \sin (k x)}{\pi k}-\frac{4 \cos (k x)}{\pi k^{2}} .
$$

(4) $(5+5+5+5+5$ points)
a) Consider the function $f(x)=e^{-x}, x \in[-\pi, \pi)$ which is extended periodically to the real line, by the rule $f(2 \pi+x)=f(x)$. Draw the graph in $[-2 \pi, 2 \pi]$. The functions satisfies the following differential equation

$$
\begin{equation*}
\frac{d}{d x} f(x)+f(x)=g(x) \tag{0.1}
\end{equation*}
$$

for some function $g(x):[-\pi, \pi] \rightarrow \mathbb{R}$. Find such g.
b) Compute the complex Fourier series of $f(x)$,

$$
f(x)=\sum_{k \in \mathbb{Z}} d_{k} e^{i k x},
$$

in the standard way.

Solution:

Figure 1. The graph of f.
a) For the differential equation, we have that

$$
\frac{d}{d x} e^{-x}+e^{-x}=-e^{-x}+e^{-x}=0
$$

hence $g(x)$ is the constantly 0 function.
b)

$$
\begin{aligned}
d_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-x} e^{-i k x} d x & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-(1+i k) x} d x=-\left.\frac{1}{2 \pi} \frac{e^{-(1+i k) x}}{(1+i k)}\right|_{-\pi} ^{\pi}= \\
& =\frac{1}{2 \pi}\left[\frac{e^{(1+i k) \pi}}{(1+i k)}-\frac{e^{-(1+i k) \pi}}{(1+i k)}\right]=\frac{\sinh ((1+i k) \pi)}{\pi(1+i k)} .
\end{aligned}
$$

c) Try to compute the Fourier coefficients of f using the differential equation (0.1). Do you get the same result as in part b?
d) Explain the reason for the answer you gave in part c.
e) Compute

$$
\sum_{k \in \mathbb{Z}}\left|d_{k}\right|^{2} .
$$

Solution:

c) Applying the differential equations to the Fourier coefficients yields the following equations

$$
d_{k}(i k)+d_{k}=0, \text { for all } k \in \mathbb{Z}, k \neq 0 .
$$

These equations imply that for $|k| \neq 1$, then $d_{k}=0$, which is different from what we obtained in part b).
d) The problem is that f is not differentiable when we look at it as a function on the real line. Hence, as the differential equations (0.1) holds only in $(-\pi, \pi)$ and the discontinuity at $-\pi$ is the source of the discrepancy in the results between part b) (the right one) and part c) (the wrong one).
e)

$$
\sum_{k \in \mathbb{Z}}\left|d_{k}\right|^{2}=\int_{-\pi}^{\pi}|f(x)|^{2} d x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{-2 x} d x=\frac{e^{2 \pi}-e^{-2 \pi}}{4 \pi}
$$

