18.085 Summer 2013 - Quiz 2 - July 26, 2013

YOUR NAME:

YOUR SCORE: __ $/ 100+\ldots / 5$ extra credit
(1) $(5 \times 6=30$ points.)

Consider the truss drawn on the board.
a) Is there a possible mechanism or rigid motion? If so, draw one.
b) Build the matrix A corresponding to this truss.
c) Use the matrix A to verify mathematically your answer to (a). That is, depending on your answer to (a) : either prove the nullspace of A is trivial, or give a basis for the nullspace of A (no need to prove you have indeed a basis, but be sure of your answer!).
(Problem 1 continued.)
d) Now fix node 2 . Get rid of bar 3 since it is now useless. What is the matrix A for this new truss?
e) Is the truss in (d) stable? Prove this mathematically.
(2) $(3 \times 8+2 \times 3=30$ points.)

Consider a hanging bar. We have the following equation for its displacement u, given that $c(x)=1 / 2$ for $x<1 / 2$ and $c(x)=2$ for $x>1 / 2$, and $f(x)=\delta(x-1 / 2)$:

$$
-\frac{d}{d x}\left(c(x) \frac{d u}{d x}\right)=f(x), \quad x \in[0,1] .
$$

We also have the boundary conditions $u(0)=0$ and $\frac{d u}{d x}(1)=0$.
a) Find $w(x)=c(x) \frac{d u}{d x}$, and graph it.
b) Find $\frac{d u}{d x}$, and graph it.
c) Find u, and graph it.

Circle your answers to (d), (e) (no explanation).
d) Which part of the bar is stiffer: $0<x<1 / 2$ or $1 / 2<x<1$.
e) Which part of the bar is stretched (more): $0<x<1 / 2$ or $1 / 2<x<1$.
(This page intentionally left blank.)
(3) $(6+6+5$ extra $+12=24$ points +5 extra credit points.)

A system of springs and masses can be modeled using $M \vec{u}^{\prime \prime}=-K \vec{u}$ for \vec{u} the vector of displacements of the masses. We use primes to mean time derivatives. $K=A^{T} C A$, where A is the first difference matrix and C is the constitutive law.
a) What does the equation $M \vec{u}^{\prime \prime}=-K \vec{u}$ for \vec{u} simplify to if we only have one mass and one spring? (Use the notation on the board.)
b) Find an analytical solution to the equation $m u^{\prime \prime}=-k u$, for $u=u(t)$. Don't bother with initial conditions. Just give ONE expression (there could be more than one that work, it could be complex) for u which satisfies the given equation.
c) EXTRA CREDIT QUESTION, OPTIONAL. Now find a solution of $m u^{\prime \prime}=$ $-k u$, for $u=u(t)$, with the following initial conditions: $u(0)=1$ and $u^{\prime}(0)=0$.
d) We want to solve the problem in (c) with $m=1$ (so we will ignore m) and $k=4$ using the leap-frog method (finite differences in time). Modify lines 4, 5 and 9 (don't modify anything else) of the following Matlab code to do this.

```
01: T=2*pi;nt=50;dt=T/nt;
02: k=4;
03: u=zeros(1,nt+1);
04: u0=
05: up0=
06: u(1)=u0;
07: u(2)=u0+dt*up0;
08: for i=3:nt+1
09: u(i)=
10: end
```

(This page intentionally left blank.)
(4) $(6+10=16$ points.)
(a) I want to use Newton's method to solve $p(x)=0$ with starting guess x_{0}. Write down the algorithm to find the next guesses x_{1}, x_{2}, etc (1 line, plus say for which indices that line holds).
(b) I want to solve Laplace's equation $-\frac{d^{2} u}{d x^{2}}=f$ on $x \in[0,1]$ with boundary conditions (CAREFUL!) $u(1)=0$ and $\frac{d u}{d x}(0)=0$. Let $h=1 / 3$. Draw the hat functions you would use to solve this problem using the Finite Element Method. Label your axes. OK to draw them all on the same graph.

