(1) The inverses are

$$
\begin{aligned}
\left(\begin{array}{lll}
1 & 0 & 0 \\
l_{1} & 1 & 0 \\
l_{2} & 0 & 1
\end{array}\right)^{-1} & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
-l_{1} & 1 & 0 \\
-l_{2} & 0 & 1
\end{array}\right) \\
\left(\begin{array}{lll}
1 & 0 & 0 \\
l_{1} & 1 & 0 \\
l_{2} & 1 & 1
\end{array}\right)^{-1} & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
-l_{1} & 1 & 0 \\
-l_{2}+l_{1} & -1 & 1
\end{array}\right) \\
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 110 & 0 \\
0 & 0 & 11110
\end{array}\right)^{-1} & =\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \frac{1}{110} & 0 \\
0 & 0 & \frac{1}{11110}
\end{array}\right) .
\end{aligned}
$$

(2) a)

$$
A=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), B=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)
$$

b)

$$
C=\left(\begin{array}{ll}
1 & -1 \\
1 & -1
\end{array}\right)
$$

c)

$$
D=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

d)

$$
E=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right), \theta \in[0,2 \pi] .
$$

(3) We have to split the linear system into two parts

$$
\left\{\begin{array}{c}
U x=y \\
L y=f
\end{array}\right.
$$

a

$$
L y=f \text { is }\left(\begin{array}{ccc}
4 & 0 & 0 \\
1 & 3 & 0 \\
1 & 2 & 1
\end{array}\right) y=\left(\begin{array}{l}
12 \\
12 \\
12
\end{array}\right)
$$

whose solution is $y=\left(\begin{array}{l}3 \\ 3 \\ 3\end{array}\right)$. The second part then becomes

$$
\left(\begin{array}{lll}
2 & 3 & 5 \\
0 & 3 & 1 \\
0 & 0 & 1
\end{array}\right) x=\left(\begin{array}{l}
3 \\
3 \\
3
\end{array}\right)
$$

for which a solution is

$$
x=\left(\begin{array}{c}
-6 \\
0 \\
3
\end{array}\right)
$$

(4) For the first matrix the decomposition reads

$$
\left(\begin{array}{lllll}
2 & 1 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 \\
0 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & 1 & 2
\end{array}\right)=\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
1 / 2 & 1 & 0 & 0 & 0 \\
0 & 2 / 3 & 1 & 0 & 0 \\
0 & 0 & 3 / 4 & 1 & 0 \\
0 & 0 & 0 & 4 / 5 & 1
\end{array}\right)\left(\begin{array}{ccccc}
2 & 1 & 0 & 0 & 0 \\
0 & 3 / 2 & 1 & 0 & 0 \\
0 & 0 & 4 / 3 & 1 & 0 \\
0 & 0 & 0 & 5 / 4 & 1 \\
0 & 0 & 0 & 0 & 6 / 5
\end{array}\right)
$$

For the second one, as in exercise 8), we have to multiply by a permutation matrix. Then we do as follows: let

$$
P=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

be the permutation matrix, then

$$
P A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 3 & 1 \\
2 & 2 & 2
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
2 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 1 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right)=L U
$$

(5) The solution to the first part is

$$
y=2 x^{2}+3 x-4
$$

If we look for a solution of the kind $y=a x^{2}+b x+c$, plugging in $(0,-4)$ and $(1,1)$ we see that

$$
\begin{aligned}
c & =-4 \\
a+b & =5
\end{aligned}
$$

hence the solution is not unique and it is of the form

$$
y=\lambda x^{2}+(5-\lambda) x-4
$$

as λ varies over the real numbers.
For the second part, as hinted, we have to solve the linear system

$$
\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 1 \\
0 & 1 & 4 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
c \\
b \\
a
\end{array}\right)=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 2 & 1 \\
0 & 1 & 4 & 1
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
1 \\
2
\end{array}\right)
$$

which is equal to the system

$$
\left(\begin{array}{ccc}
4 & 4 & 6 \\
4 & 6 & 10 \\
6 & 10 & 18
\end{array}\right)\left(\begin{array}{l}
c \\
b \\
a
\end{array}\right)=\left(\begin{array}{l}
4 \\
5 \\
7
\end{array}\right)
$$

for which a solution is

$$
\left(\begin{array}{l}
c \\
b \\
a
\end{array}\right)=\left(\begin{array}{c}
1 \\
5 / 2 \\
-1
\end{array}\right)
$$

(6)

$$
\begin{gathered}
\left\{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\} \text { becomes }\left\{\frac{1}{\sqrt{3}}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right), \frac{1}{\sqrt{6}}\left(\begin{array}{c}
1 \\
1 \\
-2
\end{array}\right), \frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)\right\} \\
\left\{\left(\begin{array}{c}
100 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
100 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
2
\end{array}\right)\right\} \\
\left\{\binom{1 / 2}{\sqrt{3} / 2},\binom{-\sqrt{3}}{1}\right\} \quad \text { becomes }\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right. \\
\text { becomes }\left\{\binom{1 / 2}{\sqrt{3} / 2},\binom{-\frac{\sqrt{3}}{2}}{\frac{1}{2}}\right\} .
\end{gathered}
$$

(7) Here is the MATLAB code:

```
[m, n] = size(A);
Asave = A;
for j = 1:n
    for k = 1:j-1
        mult = (A(:, j)'*A(:, k)) / (A(:, k)'*A(:, k));
        A(:, j) = A(:, j) - mult*A(:, k);
    end
end
for j = 1:n
    if norm(A(:, j)) < sqrt(eps)
            error('Columns of A are linearly dependent.')
        end
        Q(:, j) = A(:, j) / norm(A(:, j));
end
R = Q'*A;
```

(8) As explained in the the second section of Chapter 1.3, in this case, we have to permute the rows of the matrix as the first one begins with 0 . We can exchange it with second one and ore new matrix looks like

$$
\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

and its LU decomposition is

$$
L=I d, U=\left(\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Hence, we have that if we consider

$$
P=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right),
$$

then we have that

$$
P A=L U,
$$

where we denote by A our original matrix.

