18.085, PROBLEM SET 1, SOLUTIONS

(1) a) The solutions to the linear system is

$$
u(0)=0=u(1), u\left(\frac{1}{4}\right)=u\left(\frac{3}{4}\right)=\frac{3}{32}, u\left(\frac{1}{2}\right)=\frac{1}{8} .
$$

b) The values found in a) and those of the analytic solution $u(x)=-\frac{x(x-1)}{2}$ coincide at the points $x=0, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}, 1$.
c)

$$
\left(\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0 \\
-1 & 2 & -1 & 0 & 0 \\
0 & -1 & 2 & -1 & 0 \\
0 & 0 & -1 & 2 & -1 \\
0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
u(0) \\
u\left(\frac{1}{4}\right) \\
u\left(\frac{1}{2}\right) \\
u\left(\frac{3}{4}\right) \\
u(1)
\end{array}\right)=\left(\begin{array}{c}
0 \\
\frac{1}{16} \\
\frac{1}{16} \\
\frac{1}{16} \\
0
\end{array}\right)
$$

d) Let $h=\frac{1}{n}$. Then we want to identify the values of u at the $n+1$ nodes $0, \frac{1}{n}, \frac{2}{n}, \frac{3}{n}, \ldots, \frac{n-2}{n}, \frac{n-1}{n}, 1$.
As the only change form the first part of the problem is in the boundary conditions, we can rewrite the equations for the interior nodes in the same way as before:

$$
\left\{\begin{aligned}
\frac{-u\left(\frac{k-1}{n}\right)+2 u\left(\frac{k}{n}\right)-u\left(\frac{k+1}{n}\right)}{\left(\frac{1}{n}\right)^{2}} & =1, k=1,2,3, \ldots, n-2, n-1 \\
u(1) & =0
\end{aligned}\right.
$$

As suggested in the hint we should approximate $u^{\prime}(0)$ with $\frac{u(h)-u(0)}{h}$. Hence, as $u^{\prime}(0)=0$, we get that $u(0)=u\left(\frac{1}{n}\right)$, so that the full linear system to solve the problem looks as follows:

$$
\left\{\begin{aligned}
\frac{-u\left(\frac{k-1}{n}\right)+2 u\left(\frac{k}{n}\right)-u\left(\frac{k+1}{n}\right)}{\left(\frac{1}{n}\right)^{2}} & =1, k=1,2,3, \ldots, n-2, n-1 \\
u(1) & =0 \\
u(0) & =u\left(\frac{1}{n}\right)
\end{aligned}\right.
$$

e) The solution to the linear system in d), when $n=4$ is

$$
u(1)=0, u(0)=u\left(\frac{1}{4}\right)=\frac{6}{16}, u\left(\frac{1}{2}\right)=\frac{5}{16}, u\left(\frac{3}{4}\right)=\frac{3}{16} .
$$

f) The analytic solution computed in class, for the differential equation

$$
\left\{\begin{array}{r}
-\frac{d^{2}}{d x^{2}} u(x)=1, x \in[0,1] \\
u^{\prime}(0)=0=u(1)
\end{array}\right.
$$

is $u(x)=-\frac{x^{2}-1}{2}$. Hence, in this case

$$
u(0)=\frac{1}{2}, u\left(\frac{1}{4}\right)=\frac{15}{32}, u\left(\frac{1}{2}\right)=\frac{1}{8}, u\left(\frac{3}{4}\right)=\frac{7}{32}, u(1)=0 .
$$

So the values obtained in e) and those in f) differ. The reason is given by the error that we introduce when we approximate $u^{\prime}(0)=0$ by $\frac{u(h)-u(0)}{h}=0$.
(2) Code for MAtlab:

```
%define the matrix
A=[0}000110 1
0 0 0 1 1;
100 1 0;
110 0 0;
0 1 1 0 0];
%define the LHS
b=[[6 4 4 5 6 9 9
%x is the vector containing the c values
x=A\b
```

Result:

$$
x=\left(\begin{array}{l}
2 \\
4 \\
5 \\
3 \\
1
\end{array}\right) .
$$

The column vectors are independent, hence this implies that there is a unique solution $\left(c_{1}, c_{2}, c_{3}, c_{4}, c_{5}\right)$ that satisfies the above equation, i.e. the vector x above.

$$
A=\left(\begin{array}{lll}
1 & 2 & 3 \tag{3}\\
4 & 5 & 6 \\
7 & 8 & 9
\end{array}\right)
$$

$\operatorname{Null}(\mathrm{A})=\left\{\lambda\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right), \lambda \in \mathbb{R}\right\}$, hence $\operatorname{dim} \operatorname{Null}(\mathrm{A})=1$ and $\operatorname{rk} A=2$, by the fundamental theorem of algebra. $\operatorname{Null}(\mathrm{A})$ is a line described by the equations

$$
\begin{aligned}
& \left\{\begin{array}{r}
2 x+y \\
x-z=0
\end{array}\right. \\
& A=\left(\begin{array}{ccc}
1 & 0 & 3 \\
0 & -2 & 6 \\
1 & 0 & 3
\end{array}\right)
\end{aligned}
$$

$\operatorname{Null}(\mathrm{A})=\left\{\lambda\left(\begin{array}{c}3 \\ -3 \\ -1\end{array}\right), \lambda \in \mathbb{R}\right\}$, hence $\operatorname{dim} \operatorname{Null}(\mathrm{A})=1$ and $\mathrm{rk} A=2$, by the fundamental theorem of algebra. $\operatorname{Null}(\mathrm{A})$ is a line described by the equations

$$
\begin{aligned}
& \left\{\begin{aligned}
x+y & =0 \\
x+\frac{1}{3} z & =0
\end{aligned}\right. \\
& A=\left(\begin{array}{lll}
1 & 0 & 1 \\
0 & 2 & 1
\end{array}\right)
\end{aligned}
$$

$\operatorname{Null}(\mathrm{A})=\left\{\lambda\left(\begin{array}{c}1 \\ 1 / 2 \\ -1\end{array}\right), \lambda \in \mathbb{R}\right\}$, hence $\operatorname{dim} \operatorname{Null}(\mathrm{A})=1$ and rk $A=2$, by the fundamental theorem of algebra. $\operatorname{Null}(\mathrm{A})$ is a line described by the equations

$$
\left\{\begin{array}{r}
x+z=0 \\
2 x-y=0
\end{array}\right.
$$

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

$\operatorname{Null}(\mathrm{A})=\left\{\lambda\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right)+\mu\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right), \lambda, \mu \in \mathbb{R}\right\}$, ihence $\operatorname{dim} \operatorname{Null}(\mathrm{A})=1$ and rk $A=2$, by the fundamental theorem of algebra. $\operatorname{Null}(\mathrm{A})$ is a line described by the equations

$$
x+y+z=0
$$

$$
\left\{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\}
$$

This vectors are independent. Hence their span is all of \mathbb{R}^{3} as they are 3 independent 3 -dimensional vectors.

$$
\left\{\left(\begin{array}{l}
6 \\
2 \\
1
\end{array}\right),\left(\begin{array}{c}
-3 \\
-1 \\
15
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
3
\end{array}\right)\right\}
$$

It is immediate to verify that the vectors above satisfy the relation

$$
\left(\begin{array}{l}
6 \\
2 \\
1
\end{array}\right)+2\left(\begin{array}{c}
-3 \\
-1 \\
15
\end{array}\right)-\frac{31}{3}\left(\begin{array}{l}
0 \\
0 \\
3
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

The vectors

$$
\left\{\left(\begin{array}{l}
6 \\
2 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
3
\end{array}\right)\right\}
$$

are nonetheless indepent. Hence

$$
\operatorname{span}\left\{\left(\begin{array}{l}
6 \\
2 \\
1
\end{array}\right),\left(\begin{array}{c}
-3 \\
-1 \\
15
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
3
\end{array}\right)\right\}=\operatorname{span}\left\{\left(\begin{array}{l}
6 \\
2 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
3
\end{array}\right)\right\}
$$

This is 2 dimensional, i.e. a plane in \mathbb{R}^{3}, hence it is described by an equation of the type

$$
a x+b y+c z=0
$$

Of course, the vectors

$$
\left\{\left(\begin{array}{l}
6 \\
2 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
3
\end{array}\right)\right\}
$$

satisfy this equation, which imply that

$$
\left\{\begin{array}{r}
a \cdot 6+b \cdot 2+c \cdot 1=0 \\
a \cdot 0+b \cdot 0+c \cdot 3=0
\end{array}\right.
$$

Hence,

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right)=\lambda\left(\begin{array}{c}
1 \\
-3 \\
0
\end{array}\right)
$$

for a fixed non zero choice of λ.
(6) a) We already know that $v_{1}=1, v_{n}=0$. Let's write the conditions imposed by Kirchoff's law at interior nodes:

The total sum of the incoming and the outgoing currents is 0 .
This means that, for example at v_{2}, we have

$$
\frac{v_{1}-v_{2}}{R}+\frac{v_{3}-v_{2}}{R}=0,
$$

and the same holds at all interior vertices.
Hence we can write down the following system of equations:

$$
\left\{\begin{aligned}
\frac{v_{k-1}-2 v_{k}+v k+1}{R} & =0, k=2,3, \ldots, n-2, n-1 \\
v_{1} & =1 \\
v_{n} & =0
\end{aligned}\right.
$$

When $n=6$ the above system becomes

$$
\left\{\begin{array}{r}
\frac{v_{1}-2 v_{2}+v 3}{R}=0, \\
\frac{v_{2}-2 v_{3}+v 4}{N}=0, \\
\frac{v_{3}-2 v_{4}+v 5}{}=0, \\
\frac{v_{4}-2 v_{5}+v 6}{R}=0, \\
v_{1}=1 \\
v_{6}=0
\end{array}\right.
$$

In this case the solution is

$$
v_{1}=1, v_{2}=4 / 5, v_{3}=3 / 5, v_{4}=2 / 5, v_{5}=1 / 5, v_{6}=0 .
$$

b) clear all;
$\mathrm{n}=10000$;
L=sparse([], [], [] ,n,n,3*n-4);
b=zeros(n,1);
$\mathrm{L}(1,1)=1$;
$\mathrm{L}(\mathrm{n}, \mathrm{n})=1$;

```
b}(1,1)=1
for i=2:n-1
    L(i,i-1)=1;
    L(i,i)=-2;
    L(i, i+1)=1;
end
%Determine how long it takes to solve Ax=b
tic
v=L\b;
toc
%Print the computed value of node 5000
v5000=sprintf('%0.6f',v(5000));
```

To take into account the time needed to build L , just move the command tic at the top of the program. Resolution time is around 0.002 secs.
c) clear all;
$\mathrm{n}=10000$;
L=zeros (n, n);
b=zeros(n,1);
$\mathrm{L}(1,1)=1$;
$\mathrm{L}(\mathrm{n}, \mathrm{n})=1$;
$\mathrm{b}(1,1)=1$;
for $\mathrm{i}=2: \mathrm{n}-1$
$\mathrm{L}(\mathrm{i}, \mathrm{i}-1)=1$;
$\mathrm{L}(\mathrm{i}, \mathrm{i})=-2$;
$L(i, i+1)=1$;
end
\%Determine how long it takes to solve Ax=b
tic
$\mathrm{v}=\mathrm{L} \backslash \mathrm{b}$;
$\%$ Print the computed value of node 5000
v5000=sprintf('\%0.6f',v(5000));
toc

To take into account the time needed to build L , just move the command tic at the top of the program.

