
18.085, PROBLEM SET 6 SOLUTIONS

Question 1. Newton’s method.
We will be using Newton’s method to find the roots of polynomials. We will be using the

Matlab file on the website.

a) Take g(u) = u, then dg
du(u) = 1. We change line 16 of the code so it runs Newton’s

method:

u1=u0-g(u0)/dg(u0);

The starting guess is u0 = 1/2. We run the code with that starting guess, and three
other starting guesses of our choice. In every case, the method converges in exactly
1 step. This is because our function is a straight line: Newton’s method follows that
line until it crosses the x-axis in order to find the next guess, but it happens that for
a function which is a line, that next guess is the exact solution.

Now, a slightly harder problem: g(u) = 1
3u

3 − 3
2u

2 + 2u.

b) The derivative is dg
du(u) = u2 − 3u + 2. See solution code for how to put this in the

code. Back to a starting guess u0 = 1/2. We run the code and see it converges to
approximate root u∗ = −1.6324 ∗ 10−10 ≈ 0 with |g(u∗)| = −3.2649e− 10 ≈ 0.

c) The derivative is dg
du = u2 − 3u + 2 = (u − 2)(u − 1), hence the roots are at 1 and

2. Since Newton’s method needs to divide by the derivative at each guess, and we
have starting guesses where the derivative is 0, the method will not converge after 100
iterations and return infinity for the last guess (or NaN in Matlab, we won’t discuss
the subtleties of Inf vs NaN for Matlab).

d) We plot the polynomial g as a function of u in figure 1. We see there is only one
root, and the guess u0 = 3/2 is between the relative minimum and maximum. What
happens is that Newton’s method struggles here: it wants to go right to go towards
0, but the function at the min u = 2 is positive. So then it goes left, but again stays
stuck in the “bowl” created by the relative min. It takes a number of iterations, and
going left and right around u = 2, before Newton’s method can escape the “bowl”
and finally converge.

Relative minima and maxima can be treacherous for Newton’s method, both be-
cause they exhibit a 0 derivative, and also because the method can get “stuck” there
for a number of iterations.

Question 2. Finite elements.
We will solve −u′′ = x for u = u(x) in [0, 1] with boundary conditions u(0) = u(1) = 0

using the Finite Elements Method. Let h = 1/3.

a) We will need 2 hat functions φ1 and φ2 since there are 2 free nodes, at x = 1/3 and
2/3. Nodes at x = 0 and 1 are fixed at 0. See the hat functions on figure 2 and their
derivatives on figure 3.

b) Assume φ1 = V1, φ2 = V2. Recalling that h = 1/3 and splitting the integral into
elements: K12 = 1

3 · 3 · 0 + 1
3 · −3 · 3 + 1

3 · 0 · −3 = −3 = K21.

c) K11 = 1
3 · 3

2 + 1
3 · (−3)2 + 1

3 · 0
2 = 6 = K22.
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Figure 1. Plot of g for 1.b), c), d).
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Figure 2. Hat functions.

d) Break up the [0, 1] interval into elements, and use the midpoint rule on each element
separately. We have f(x) = x. F1 = 1

3 ·
1
6 ·

1
2 + 1

3 ·
3
6 ·

1
2 + 1

3 ·
5
6 · 0 = 1

9 . F2 =
1
3 ·

1
6 · 0 + 1

3 ·
3
6 ·

1
2 + 1

3 ·
5
6 ·

1
2 = 2

9 .
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Figure 3. Derivatives of hats.

e) Finally, solve the system K~U = ~F for ~U :

K~U =

(
6 −3
−3 6

)(
U1

U2

)
=

(
1/9
2/9

)
or

K−1 ~F =
1

36− 9

(
6 3
3 6

)(
1/9
2/9

)
=

(
U1

U2

)
=

1

27

(
4/3
5/3

)
.

f) The approximate solution is U(x) = U1φ1(x) + U2φ2(x). We know it is 0 at x = 0
and x = 1, it is 4/81 at x = 1/3 and 5/81 and x = 2/3, and linear in-between. See
figure 4.

Question 3. (20 pts.) Potentials and stream functions.

a) The potential of v is

u =
x2y2 + x2z2 + y2z2

2
+ cost.

b) If a potential u existed, then we could recover it, integrating by parts as follows:

u(x, y) =

∫
vxdx+ F (y) =

∫
vydy +G(x)
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Figure 4. Solution.

where F,G are functions of one variable.
Now,

u(x, y) =

∫
vxdx+ F (y) = 2xy + F (y)

u(x, y) =

∫
vydy +G(x) = −2λxy +G(x), hence,

2xy + F (y) = −2λxy +G(x).

This forces λ = −1 in order to obtain a potential u, in which case u = 2xy + cost.
When λ 6= −1 then we cannot find a potential, as curl v 6= 0.

c) As ∂v1
∂y = 2x, ∂v2∂x = 2x, then curl v = 0, hence v is conservative and the potential is

given by u(x, y) = x2y − y3

3 .
Since div v = 0, as we discussed in class, v also admits a stream function s.

Such stream function will be of the form s(x, y) = x3

3 − xy
2.

Question 4. (20 pts.) Laplace’s equation.

a) It is immediate to compute that

uxx = −k2 sin (πkx) sinh (πky)

sinh (πk)

uyy = k2
sin (πkx) sinh (πky)

sinh (πk)
, hence,

∆u = 0.
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c) This follows from parts a) and b) and the fact that we can take derivatives of the
serie term by term.

d) The solution is v(x, y) =
∑

k
sin (πkx) sinh (πk(1−y))

sinh (πk)


