
18.085, PROBLEM SET 5, SOLUTIONS

Question 1. (40 pts.) Standing waves revisited.
We solve

(0.1)
∂2

∂t2
u(x, t) =

∂2

∂x2
u(x, t), x ∈ [0, 1], u(0) = u(1) = 0.

with u(x, t) = sin (k2πx) cos (k2πt) (k some real number), with initial conditions u(x, 0) =
sin (k2πx) and ∂

∂tu(x, 0) = 0.

a) Verify our guess for u satisfies both initial conditions:

u(x, t = 0) = sin (k2πx) cos (k2πt)|t=0 = sin (k2πx)

works. Also,

∂

∂t
u(x, t = 0) = (k2π) sin (k2πx) sin (k2πt)|t=0 = 0,

which also works. There is no restriction on the possible values of k.
b) Verify our guess for u satisfies both boundary conditions:

u(x = 0, t) = sin (k2π0) cos (k2πt) = 0

works. Also, u(x = 1, t) = sin (k2π1) cos (k2πt) = 0 implies we need sin (k2π) = 0,
which implies k2π needs to be an integer multiple of π, so 2k needs to be an integer.
Hence we get a restriction on the possible values of k:

k = · · · − 1.5,−1,−0.5, 0, 0.5, 1, 1.5, . . . .

c) Verify our guess for u satisfies the wave equation (0.1). We got earlier

∂

∂t
u(x, t) = (k2π) sin (k2πx) sin (k2πt)

and so

∂2

∂t2
u(x, t) = (−1)(k2π)2 sin (k2πx) cos (k2πt) = (−1)(k2π)2u(x, t).

Also,
∂

∂x
u(x, t) = (k2π) cos (k2πx) cos (k2πt)

and

∂2

∂x2
u(x, t) = −(k2π)2 sin (k2πx) cos (k2πt) = −(k2π)2u(x, t).

Hence it is clear that the wave equation ∂2

∂t2
u(x, t) = ∂2

∂x2u(x, t) is satisfied. We do not
get an additional restriction on the possible values of k.

d) Based on answers to (a), (b), (c), we guess u(x, t) = cos (k2πx) cos (k2πt) for the
solution of (0.1) if we changed the boundary conditions to be free-free ends, that is,
∂
∂xu(0, t) = ∂

∂xu(1, t) = 0. You can check for yourself that the initial conditions are
still satisfied, and that the wave equation itself is also still satisfied. Now, boundary
conditions: ∂

∂xu(x, t) = − sin (k2πx) cos (k2πt), so that ∂
∂xu(x = 0, t) = 0 is satisfied,
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and to get also ∂
∂xu(x = 1, t) = 0, we need sin (k2π1) = 0 or again k can be half-

integers: k = · · · − 1.5,−1,−0.5, 0, 0.5, 1, 1.5, . . . . This is the appropriate restriction
on k.

Others tried a phase change in x, that is u(x, t) = sin (k2πx− φ) cos (k2πt), which
would give the same answer (up to a minus sign) once the value of φ = ±π/2 is found.

So in problem set 4, we could have tried half-integers too for standing waves! And cosines
with free-free ends.

Question 2. (30 pts.) Resonance and practice with (complex) exponentials.
Consider :

(0.2) mu′′ + bu′ + ku = f.

Again, we guess that u = ert where r is some complex number to be found (we can’t expect

anymore that r = iω = i
√
k/m, the natural frequency of the un-damped system).

a) Let f = 0. Verify our guess for u satisfies (0.2): u′ = rert and u′′ = r2ert so
mu′′ + bu′ + ku = (mr2 + br + k)ert = 0. Since ert is never 0, we solve the quadratic

in r to get 2 possible values of r: r =
−b±
√

(b2−4mk)

2m . This is the restriction on the
possible values of r.

b) Put b = 0 (no damping) in your answer for r from (a) and verify that this corresponds
to what we expect for the un-damped system: now the possible values for r are

r =
±
√

(−4mk)

2m = ±i
√
k/m, as expected.

c) Let b = 0 again, and now let f(t) = ert, where r is one of the (perhaps multiple)
possible values of r you got in (b). Clearly the guess u = ert does not satisfy (0.2)
with b = 0 and f(t) = ert, since we solved the equation mu′′ + bu′ + ku = 0 with it,
and now we want a non-zero right-hand side!

d) Same as in (c), but now try the guess u = Atert, where A is the amplitude, possibly
a complex number: u′ = A(1 + tr)ert and u′′ = A(r + r + tr2)ert, so mu′′ + ku =
Aert

(
2mr +mtr2 + kt

)
= f = ert, but r2 = −k/m from (c), so that in fact we have

the equality Aert (2mr +mt(−k/m) + kt) = ert or A2mr = 1, or we get the following

restriction on A: A = 1/2mr, with r = ±i
√

(k/m). That is, A = ± i
2
√
mk

.

This proves that, if you force a system such as (0.2) at its natural frequency, the amplitude
of your solution will grow in time (but will still oscillate). This is resonance.

Question 3. (30 pts.) Structures, or how to build a stable treehouse.
We will look at the treehouses on figures 2.30, 2.31 of the book.
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a) We have the following matrix for the truss (changing the sign of all entries in one
row, for any row, is also a valid answer):

A =



cos θ1 sin θ1 0 0 − cos θ1 − sin θ1 0 0 0 0
−1 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 −1 0 0
0 0 0 1 0 0 0 0 0 −1
0 0 0 0 −1 0 1 0 0 0
0 0 0 0 0 0 −1 0 1 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0


,

and clearly the mechanism uV2 = uV5 = ∆ is in the null space of matrix A: let
u = (0, 0, 0,∆, 0, 0, 0, 0, 0,∆)T , then clearly Au = 0. The treehouse is unsafe.

b) Add a new bar in the treehouse as in Figure 2.31:

A =



cos θ1 sin θ1 0 0 − cos θ1 − sin θ1 0 0 0 0
−1 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 −1 0 0
0 0 0 1 0 0 0 0 0 −1
0 0 0 0 −1 0 1 0 0 0
0 0 0 0 0 0 −1 0 1 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 cosφ sinφ


,

and a basis for the null space of the new A is, as suggested in the book, u =
(∆ sinφ, 0,∆ sinφ,−∆ cosφ,∆ sinφ, 0,∆ sinφ, 0,∆ sinφ,−∆ cosφ)T . You can verify
this is in the nullspace: Au = 0. To find this, reason this way: node 5 will move on
a circle around node 7. To first approximation, that means it will move at a right
angle to bar 9, so with angle φ with the vertical. Then its displacement is ∆ sinφ
horizontally, and −∆ cosφ vertically. This means that nodes 1, 4 and 3 will also
have a horizontal displacement of ∆ sinφ. Is there another independent vector in the
nullspace? Our intuition would say no, because A is now 9 by 10. But we could have
dependent rows. To convince ourselves the rows are independent (hence the rank of A
is 9, hence its nullspace has dimension 10-9=1), we can reason this way. First, notice
row 7 forces u6 = uV3 = 0 and row 8 forces u8 = uV4 = 0 so we may remove rows 7, 8
from A, along with columns 6 and 8. We get a smaller matrix, and it is easier to see
then that the rows are independent:

cos θ1 sin θ1 0 0 − cos θ1 0 0 0
−1 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 −1
0 0 0 0 −1 1 0 0
0 0 0 0 0 −1 1 0
0 0 0 0 0 0 cosφ sinφ


.
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c) Since A is 9 by 10, with rank 9, we only need to add one bar, so one row which is
independent from the others. We could add a bar, say, between nodes 6 and 4, and
get the new A:

A =



cos θ1 sin θ1 0 0 − cos θ1 − sin θ1 0 0 0 0
−1 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 −1 0 0
0 0 0 1 0 0 0 0 0 −1
0 0 0 0 −1 0 1 0 0 0
0 0 0 0 0 0 −1 0 1 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 cosφ sinφ
0 0 0 0 0 0 cos θ2 sin θ2 0 0


,

and you can convince yourself that this new row is not a combination of the other
rows. Then the columns are independent too. You could also try a few values of the
angles θ1, θ2 and φ, put this A in Matlab and see it is invertible.


