
18.085, PROBLEM SET 3 SOLUTIONS

Question 1. (40 pts.) This exercise will show you how to find the Singular Value Decom-
position (SVD) of a matrix. Let

A =

(
1 4
2 8

)
.

a) We did this in class! A = UΣV T so AT = V ΣTUT = V ΣUT , since Σ is a diagonal
matrix. And so ATA = V ΣUTUΣV T = V Σ2V T since UT = U−1, that is, U is
orthonormal. (And this is the eigenvalue decomposition of the matrix M = ATA! Eigenvalues of

M = ATA are the squares of the singular values of A.)

b) M = ATA =

(
5 20
20 80

)
. det(M − λI) = (80 − λ)(5 − λ) − 400 = λ(λ − 85) = 0

so eigenvalues are λ1 = 85, λ2 = 0 (we expect a zero eigenvalue since the matrix has
rank 1). Eigenvectors solve (M − λ1I)v1 = 0 and (M − λ2I)v2 = 0, and they can
be chosen orthonormal since M is symmetric: v1 = (1, 4)/

√
17 and v2 = (4,−1)/

√
17

(−v1 and −v2 would also work, your answer for u1 would then be −u1).
c) So σ1 =

√
λ1 =

√
85 and σ2 =

√
λ2 = 0.

d) u1 = Av1/σ1 = (1, 2)/
√

5. But σ1 = 0, so we cannot divide by 0 to use this formula.
e) But U has to be orthonormal, hence its second column has to be orthonormal to

the first. By inspection, we find that u2 = (2,−1)/
√

5 would work (or, again, its
negative).

f) We do:

>> A=[1 4; 2 8];

>> [U S V]=svd(A);

>> U

U =

-4.472135954999577e-01 -8.944271909999159e-01

-8.944271909999157e-01 4.472135954999580e-01

>> S

S =

9.219544457292887e+00 0

0 2.154149081657523e-16

>> V

V =

-2.425356250363330e-01 -9.701425001453319e-01

-9.701425001453319e-01 2.425356250363330e-01

And we notice that u1 and v1 have opposite signs to what we got - this is fine,
because we have the choice of signs when we pick eigenvectors - as long as u1 and v1
are compatible through u1 = Av1/σ1 with positive σ1, it’s ok. And signs in u2, v2
don’t matter as long as they are orthonormal to u1, v1 respectively (they don’t need
to “match” through a formula like u1 and v1 do).

g) The reduced SVD of A is A = Ũ Σ̃Ṽ for Ũ = u1 =

(
1/
√

5

2/
√

5

)
, Σ̃ =

( √
85
)
, Ṽ T =

v1 =
(

1/
√

17 4/
√

17
)
. Because σ2 is 0, it cancels out u2 (which is orthonormal to

1



2

the column space of A, so cannot be useful to us because Ax has to be in the column
space of A) and v2 (which is in the nullspace of A and orthonormal to v1, hence Ax
would be 0 anyways for x in the null space of A). This is why we can get rid of u2,
v2, and the second row and column of Σ.

h) We do:

>> Ut=[1/sqrt(5);2/sqrt(5)]

Ut =

4.472135954999579e-01

8.944271909999159e-01

>> St=sqrt(85)

St =

9.219544457292887e+00

>> Vt=[1/sqrt(17);4/sqrt(17)]

Vt =

2.425356250363330e-01

9.701425001453319e-01

>> Ut*St*Vt’

ans =

1 4

2 8

which is indeed equal to A.
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Question 2. (40 pts.) We want

p(xj) = yj for j = 1, . . . , n,

with

p(x) =
n−1∑
j=0

cjx
j ,

written as a system

Ac = y,

where c is the vector of coefficients cj , y is the vector of target values of p at the given points,
that is, y contains the yj ’s, and we want to solve Ac = y exactly. Finally, we will evaluate
this polynomial at m other points.

a) Entries of A are Aij = x
(j−1)
i , that is,

A =


1 x1 x21 . . . x

(n−1)
1

1 x2 x22 . . . x
(n−1)
2

...
...

1 xn x2n . . . x
(n−1)
n

 .

This is called a Vandermonde matrix, and is famously ill-conditioned!

b) Entries of B are Bij = t
(j−1)
i , that is,

A =


1 t1 t21 . . . t

(n−1)
1

1 t2 t22 . . . t
(n−1)
2

...
...

1 tm t2m . . . t
(n−1)
m

 .

c) Let n = 4. This is what you should run and obtain:

>> format short e

>> n=4;h=1/(n-1);x=0:h:1;t=h/2:h:1-h/2;

>> A=zeros(n,n); for i=1:n, A(:,i)=x.^(i-1);end

>> B=zeros(n-1,n); for i=1:n, B(:,i)=t.^(i-1);end

>> A

A =

1.0000e+00 0 0 0

1.0000e+00 3.3333e-01 1.1111e-01 3.7037e-02

1.0000e+00 6.6667e-01 4.4444e-01 2.9630e-01

1.0000e+00 1.0000e+00 1.0000e+00 1.0000e+00

>> B

B =

1.0000e+00 1.6667e-01 2.7778e-02 4.6296e-03

1.0000e+00 5.0000e-01 2.5000e-01 1.2500e-01

1.0000e+00 8.3333e-01 6.9444e-01 5.7870e-01

d) What are the condition numbers of A,B,M?



4

>> [cond(A) cond(B) cond(M)]

ans =

9.8868e+01 2.0618e+01 3.7002e+00

e) Let now n = 10, and construct A, B and M again. What are their condition numbers?

>> n=10;h=1/(n-1);x=0:h:1;t=h/2:h:1-h/2;

>> A=zeros(n,n); for i=1:n, A(:,i)=x.^(i-1);end

>> B=zeros(n-1,n); for i=1:n, B(:,i)=t.^(i-1);end

>> M=B*inv(A);

>> [cond(A) cond(B) cond(M)]

ans =

1.5193e+07 1.7999e+06 5.4263e+02

A and B are badly conditioned (high condition number) but M is not so bad, because
Matlab used carefully modified versions of A and B before constructing M .

f) What is the norm of the error in M? norm(M*A-B) = 3.9960e-10 The error is
not as small as we would expect, because of the conditioning of A and B.

g) Let n = 20 now. This is what you should run, and what happens:

>> n=20;h=1/(n-1);x=0:h:1;t=h/2:h:1-h/2;

>> A=zeros(n,n); for i=1:n, A(:,i)=x.^(i-1);end

>> B=zeros(n-1,n); for i=1:n, B(:,i)=t.^(i-1);end

>> M=B*inv(A);

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 2.235816e-17.

h) Report the condition numbers of A and B and the norm of the error in M :

>> [cond(A) cond(B) cond(M)]

ans =

1.1471e+16 9.2524e+14 6.6207e+07

>> norm(M*A-B)

ans =

2.6316e-01

So A and B are very ill-conditioned, which is why there is so much error in M (at
this point, A and B are probably not quite accurate either).

I hope you are now convinced of two things: first, worrying about the conditioning of
your matrix can save you from making inaccurate calculations (i.e., lots of error). Second,
interpolating data at equispaced points is a terrible idea. If you ever have to do this, try
cubic splines; or use Chebyshev points (we will not discuss those techniques though, they are
beyond the scope of this class); or do not interpolate, but approximate such as least squares
does.
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Question 3. (30 pts.)

(0.1)

(
−β α
α −β

)
v = λv.

a) λ1 = −β − α and v1 = (1,−1), λ2 = −β + α and v2 = (1, 1). Since the matrix is
symmetric, we have 2 real eigenvalues and 2 independent eigenvectors (could be made
orthonormal).

For k1 = k2 = m = 1, α = k2
m = 1, β = k1+k2

m = 2. So the matrix is

(
−2 1
1 −2

)
,

which looks like a small second difference matrix!
b) −ω2

1 = λ1 = −β − α = −3 so ω1 =
√

3 and −ω2
2 = λ2 = −β + α = −1 so ω2 = 1.

c) For k1 = .1, k2 = 1000, m = 1, α = k2
m = 1000, β = k1+k2

m = 1000.1. Then

−ω2
1 = λ1 = −β − α = −2000.1 so ω1 =

√
2000.1 and −ω2

2 = λ2 = −β + α = −.1 so

ω2 =
√
.1.

d) Since the matrix is symmetric negative definite (eigenvalues are negative), the con-
dition number is the largest eigenvalue in absolute value (= largest singular value)
divided by the smallest eigenvalue in absolute value (= smallest singular value). Hence

the matrix in (b) has condition number |−3||−1| = 3, which is not bad at all. But the

matrix in (c) has condition number |−2000.1||−.1| = 20001, which is quite high - we can say

this matrix is badly conditioned. Notice that the condition number is the square of

the ratio of the frequencies: cond = |λ1|
|λ2| =

(
ω1
ω2

)2
. So the ratio ω1/ω2 of the frequen-

cies of oscillations is the square root of the condition number. This means that, when
we have a high condition number, that ratio is moderately large. Or, if we expect to
have a moderately large ratio between frequencies in our system, we can expect the
system to be badly conditioned, hence we can expect initial errors to be amplified a
lot, sadly.


