18.085, PROBLEM SET 3 SOLUTIONS

Question 1. (40 pts.) This exercise will show you how to find the Singular Value Decomposition (SVD) of a matrix. Let

$$
A=\left(\begin{array}{ll}
1 & 4 \\
2 & 8
\end{array}\right)
$$

a) We did this in class! $A=U \Sigma V^{T}$ so $A^{T}=V \Sigma^{T} U^{T}=V \Sigma U^{T}$, since Σ is a diagonal matrix. And so $A^{T} A=V \Sigma U^{T} U \Sigma V^{T}=V \Sigma^{2} V^{T}$ since $U^{T}=U^{-1}$, that is, U is orthonormal. (And this is the eigenvalue decomposition of the matrix $M=A^{T} A$! Eigenvalues of $M=A^{T} A$ are the squares of the singular values of A.)
b) $M=A^{T} A=\left(\begin{array}{cc}5 & 20 \\ 20 & 80\end{array}\right) \cdot \operatorname{det}(M-\lambda I)=(80-\lambda)(5-\lambda)-400=\lambda(\lambda-85)=0$
so eigenvalues are $\lambda_{1}=85, \lambda_{2}=0$ (we expect a zero eigenvalue since the matrix has rank 1). Eigenvectors solve $\left(M-\lambda_{1} I\right) v_{1}=0$ and $\left(M-\lambda_{2} I\right) v_{2}=0$, and they can be chosen orthonormal since M is symmetric: $v_{1}=(1,4) / \sqrt{17}$ and $v_{2}=(4,-1) / \sqrt{17}$ ($-v_{1}$ and $-v_{2}$ would also work, your answer for u_{1} would then be $-u_{1}$).
c) So $\sigma_{1}=\sqrt{\lambda_{1}}=\sqrt{85}$ and $\sigma_{2}=\sqrt{\lambda_{2}}=0$.
d) $u_{1}=A v_{1} / \sigma_{1}=(1,2) / \sqrt{5}$. But $\sigma_{1}=0$, so we cannot divide by 0 to use this formula.
e) But U has to be orthonormal, hence its second column has to be orthonormal to the first. By inspection, we find that $u_{2}=(2,-1) / \sqrt{5}$ would work (or, again, its negative).
f) We do:

```
>> A=[1 4; 2 8];
>> [U S V]=svd(A);
>> U
U =
    -4.472135954999577e-01 -8.944271909999159e-01
    -8.944271909999157e-01 4.472135954999580e-01
>> S
S =
    9.219544457292887e+00 0
    0 2.154149081657523e-16
>> V
V =
    -2.425356250363330e-01 -9.701425001453319e-01
    -9.701425001453319e-01 2.425356250363330e-01
```

And we notice that u_{1} and v_{1} have opposite signs to what we got - this is fine, because we have the choice of signs when we pick eigenvectors - as long as u_{1} and v_{1} are compatible through $u_{1}=A v_{1} / \sigma_{1}$ with positive σ_{1}, it's ok. And signs in u_{2}, v_{2} don't matter as long as they are orthonormal to u_{1}, v_{1} respectively (they don't need to "match" through a formula like u_{1} and v_{1} do).
g) The reduced SVD of A is $A=\tilde{U} \tilde{\Sigma} \tilde{V}$ for $\tilde{U}=u_{1}=\binom{1 / \sqrt{5}}{2 / \sqrt{5}}, \tilde{\Sigma}=(\sqrt{85}), \tilde{V}^{T}=$ $v_{1}=(1 / \sqrt{17} 4 / \sqrt{17})$. Because σ_{2} is 0 , it cancels out u_{2} (which is orthonormal to
the column space of A, so cannot be useful to us because $A x$ has to be in the column space of A) and v_{2} (which is in the nullspace of A and orthonormal to v_{1}, hence $A x$ would be 0 anyways for x in the null space of A). This is why we can get rid of u_{2}, v_{2}, and the second row and column of Σ.
h) We do:

```
>> Ut=[1/sqrt(5);2/sqrt(5)]
Ut =
    4.472135954999579e-01
    8.944271909999159e-01
>> St=sqrt(85)
St =
    9.219544457292887e+00
>> Vt=[1/sqrt(17);4/sqrt(17)]
Vt =
    2.425356250363330e-01
    9.701425001453319e-01
>> Ut*St*Vt,
ans =
    4
    2 8
```

which is indeed equal to A.

Question 2. (40 pts.) We want

$$
p\left(x_{j}\right)=y_{j} \quad \text { for } j=1, \ldots, n,
$$

with

$$
p(x)=\sum_{j=0}^{n-1} c_{j} x^{j},
$$

written as a system

$$
A c=y,
$$

where c is the vector of coefficients c_{j}, y is the vector of target values of p at the given points, that is, y contains the y_{j} 's, and we want to solve $A c=y$ exactly. Finally, we will evaluate this polynomial at m other points.
a) Entries of A are $A_{i j}=x_{i}^{(j-1)}$, that is,

$$
A=\left(\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \ldots & x_{1}^{(n-1)} \\
1 & x_{2} & x_{2}^{2} & \ldots & x_{2}^{(n-1)} \\
\vdots & & & & \vdots \\
1 & x_{n} & x_{n}^{2} & \ldots & x_{n}^{(n-1)}
\end{array}\right)
$$

This is called a Vandermonde matrix, and is famously ill-conditioned!
b) Entries of B are $B_{i j}=t_{i}^{(j-1)}$, that is,

$$
A=\left(\begin{array}{ccccc}
1 & t_{1} & t_{1}^{2} & \ldots & t_{1}^{(n-1)} \\
1 & t_{2} & t_{2}^{2} & \ldots & t_{2}^{(n-1)} \\
\vdots & & & & \vdots \\
1 & t_{m} & t_{m}^{2} & \ldots & t_{m}^{(n-1)}
\end{array}\right)
$$

c) Let $n=4$. This is what you should run and obtain:

```
>> format short e
>> n=4;h=1/(n-1);x=0:h:1;t=h/2:h:1-h/2;
>> A=zeros(n,n); for i=1:n, A(:,i)=x.^(i-1);end
>> B=zeros(n-1,n); for i=1:n, B(:,i)=t.^(i-1);end
>> A
A =
\begin{tabular}{rrrr}
\(1.0000 \mathrm{e}+00\) & 0 & 0 & 0 \\
\(1.0000 \mathrm{e}+00\) & \(3.3333 \mathrm{e}-01\) & \(1.1111 \mathrm{e}-01\) & \(3.7037 \mathrm{e}-02\) \\
\(1.0000 \mathrm{e}+00\) & \(6.6667 \mathrm{e}-01\) & \(4.4444 \mathrm{e}-01\) & \(2.9630 \mathrm{e}-01\) \\
\(1.0000 \mathrm{e}+00\) & \(1.0000 \mathrm{e}+00\) & \(1.0000 \mathrm{e}+00\) & \(1.0000 \mathrm{e}+00\)
\end{tabular}
>> B
B =
1.0000e+00 1.6667e-01 2.7778e-02 4.6296e-03
1.0000e+00 5.0000e-01 2.5000e-01 1.2500e-01
1.0000e+00 8.3333e-01 6.9444e-01 5.7870e-01
```

d) What are the condition numbers of A, B, M ?

```
>> [cond(A) cond(B) cond(M)]
ans =
    9.8868e+01 2.0618e+01 3.7002e+00
```

e) Let now $n=10$, and construct A, B and M again. What are their condition numbers?
>> $\mathrm{n}=10 ; \mathrm{h}=1 /(\mathrm{n}-1) ; \mathrm{x}=0: \mathrm{h}: 1 ; \mathrm{t}=\mathrm{h} / 2: \mathrm{h}: 1-\mathrm{h} / 2$;
>> $A=z e r o s(n, n)$; for $i=1: n, A(:, i)=x .^{\sim}(i-1)$; end
$\gg B=z e r o s(n-1, n)$; for $i=1: n, B(:, i)=t .{ }^{\wedge}(i-1)$;end
>> M=B*inv(A);
\gg [cond(A) cond(B) cond(M)]
ans $=$
$1.5193 \mathrm{e}+07 \quad 1.7999 \mathrm{e}+06 \quad 5.4263 \mathrm{e}+02$
A and B are badly conditioned (high condition number) but M is not so bad, because Matlab used carefully modified versions of A and B before constructing M.
f) What is the norm of the error in M ? $\operatorname{norm}(M * A-B)=3.9960 \mathrm{e}-10$ The error is not as small as we would expect, because of the conditioning of A and B.
g) Let $n=20$ now. This is what you should run, and what happens:

```
>> n=20;h=1/(n-1);x=0:h:1;t=h/2:h:1-h/2;
>> A=zeros(n,n); for i=1:n, A(:,i)=x.^(i-1);end
>> B=zeros(n-1,n); for i=1:n, B(:,i)=t.^ (i-1);end
>> M=B*inv(A);
Warning: Matrix is close to singular or badly scaled.
    Results may be inaccurate. RCOND = 2.235816e-17.
```

h) Report the condition numbers of A and B and the norm of the error in M :

```
>> [cond(A) cond(B) cond(M)]
ans =
    1.1471e+16 9.2524e+14 6.6207e+07
>> norm(M*A-B)
ans =
    2.6316e-01
```

So A and B are very ill-conditioned, which is why there is so much error in M (at this point, A and B are probably not quite accurate either).
I hope you are now convinced of two things: first, worrying about the conditioning of your matrix can save you from making inaccurate calculations (i.e., lots of error). Second, interpolating data at equispaced points is a terrible idea. If you ever have to do this, try cubic splines; or use Chebyshev points (we will not discuss those techniques though, they are beyond the scope of this class); or do not interpolate, but approximate such as least squares does.

Question 3. (30 pts.)

$$
\left(\begin{array}{cc}
-\beta & \alpha \tag{0.1}\\
\alpha & -\beta
\end{array}\right) v=\lambda v .
$$

a) $\lambda_{1}=-\beta-\alpha$ and $v_{1}=(1,-1), \lambda_{2}=-\beta+\alpha$ and $v_{2}=(1,1)$. Since the matrix is symmetric, we have 2 real eigenvalues and 2 independent eigenvectors (could be made orthonormal).

For $k_{1}=k_{2}=m=1, \alpha=\frac{k_{2}}{m}=1, \beta=\frac{k_{1}+k_{2}}{m}=2$. So the matrix is $\left(\begin{array}{cc}-2 & 1 \\ 1 & -2\end{array}\right)$, which looks like a small second difference matrix!
b) $-\omega_{1}^{2}=\lambda_{1}=-\beta-\alpha=-3$ so $\omega_{1}=\sqrt{3}$ and $-\omega_{2}^{2}=\lambda_{2}=-\beta+\alpha=-1$ so $\omega_{2}=1$.
c) For $k_{1}=.1, k_{2}=1000, m=1, \alpha=\frac{k_{2}}{m}=1000, \beta=\frac{k_{1}+k_{2}}{m}=1000.1$. Then $-\omega_{1}^{2}=\lambda_{1}=-\beta-\alpha=-2000.1$ so $\omega_{1}=\sqrt{2000.1}$ and $-\omega_{2}^{2}=\lambda_{2}=-\beta+\alpha=-.1$ so $\omega_{2}=\sqrt{.1}$.
d) Since the matrix is symmetric negative definite (eigenvalues are negative), the condition number is the largest eigenvalue in absolute value (= largest singular value) divided by the smallest eigenvalue in absolute value (= smallest singular value). Hence the matrix in (b) has condition number $\frac{|-3|}{|-1|}=3$, which is not bad at all. But the matrix in (c) has condition number $\frac{|-2000.1|}{|-.1|}=20001$, which is quite high - we can say this matrix is badly conditioned. Notice that the condition number is the square of the ratio of the frequencies: cond $=\frac{\left|\lambda_{1}\right|}{\left|\lambda_{2}\right|}=\left(\frac{\omega_{1}}{\omega_{2}}\right)^{2}$. So the ratio ω_{1} / ω_{2} of the frequencies of oscillations is the square root of the condition number. This means that, when we have a high condition number, that ratio is moderately large. Or, if we expect to have a moderately large ratio between frequencies in our system, we can expect the system to be badly conditioned, hence we can expect initial errors to be amplified a lot, sadly.

