
18.085, PROBLEM SET 3, DUE 7/8 IN CLASS

Question 1. (40 pts.) This exercise will show you how to find the Singular Value Decom-
position (SVD) of a matrix. Just follow the instructions step by step, no need to refer to
your class notes about the SVD!

Recall the SVD of an n by n matrix A has A = UΣV T , where U and V are orthonormal
matrices and Σ is a diagonal matrices, with non-negative entries σj , j = 1, . . . , n. (Whatever

below is in parentheses and small font is for your information - you do not have to prove these things, but

hopefully you can understand them.) Let

A =

(
1 4
2 8

)
.

a) Show, using the definition of the SVD decomposition of A, (that is, using only the
fact that A = UΣV T with U and V orthonormal and Σ diagonal) that M = ATA =
V Σ2V T . (In fact, the eigenvalue decomposition of the matrix M = ATA is M = V Σ2V T . Indeed,

multiplying M by any column vj of V , we get Mvj = V Σ2V T vj = V Σ2ej = V σ2
j ej = σ2

j vj (where

ej is the vector with all zero entries except the jth entry, which is 1). This means that vj is an

eigenvector of M with eigenvalue σ2.)

b) Compute the matrix M = ATA and find the eigenvalues and eigenvectors of M .
Make sure the eigenvectors you choose are orthonormal! (Indeed, the matrix M = ATA is

obviously a symmetric matrix, hence its eigenvectors are a basis, and they can be chosen orthonormal.)

c) Order the eigenvalues λ1, λ2 you found in (a) in decreasing order, from largest to
smallest. Then, let σj =

√
λj for j = 1, 2. What are σ1, σ2? (You found in (a) the

eigenvalue decomposition of M , but as we have just seen, the eigenvectors of M are also the columns

of V in the SVD of A! We also know the singular values σj : they are the (positive) square roots of

the eigenvalues of M !)

d) Now we find U : Since A = UΣV T and V is orthonormal, then AV = UΣ, and so the
columns of U are : uj = Avj/σj for j = 1, 2. What is u1? What prevents you from
finding u2 this way? Hint: A has rank 1, hence one of the singular values is 0.

e) To find u2, we simply recall that U has to be orthonormal, hence its columns have to
be an orthonormal basis of R2, so if we know the first column u1, we should be able
to find the second! What is u2?

f) Verify, using Matlab, that your SVD is correct. To do this, construct the matrix
A using the command “A=[1 4; 2 8]” then compute its SVD using the command
“[U S V]=svd(A);”, where S will be Σ. Explain any discrepancies between your
SVD and Matlab’s. Hint: for A = UΣV T , if we change the signs of entries in a
column of V , can we change something in U or Σ so that the end result, UΣV still
equals A? Recall that entries in Σ should be non-negative.

g) Write down the reduced SVD of A, A = Ũ Σ̃Ṽ T , such that Ũ , Σ̃, Ṽ are as “small” as
possible. Explain why the entries of U , Σ and V you got rid of were “useless”.

h) Fortunately for you, you are more intelligent than Matlab! In particular, Matlab
cannot recognize that A has rank 1 and hence has a reduced SVD, so you can’t
compare your result from (g). However, do enter your matrices Ũ , Σ̃, Ṽ in Matlab,
multiply them together, and verify that you obtain the matrix A.

1



2

Question 2. (40 pts.) In this example, we will see that the matrix associated with poly-
nomial interpolation on equispaced points has very bad condition number. Polynomial inter-
polation consists in constructing a degree n− 1 polynomial p(x) that exactly matches given
data (xj , yj) for j = 1, . . . , n. That is, we want

p(xj) = yj for j = 1, . . . , n.

There is a unique such polynomial! Let

p(x) =
n−1∑
j=0

cjx
j

be that polynomial of degree n− 1. As in least squares, we want to find the coefficients cj of
this polynomial, but this time we want no error! So in

Ac = y,

c is the vector of coefficients cj , y is the vector of target values of p at the given points, that
is, y contains the yj ’s, and we want to solve Ac = y exactly. (You can really think of this
as doing an “exact” least squares problem, which, well, wouldn’t be called “least squares”
then.) Finally, we will evaluate this polynomial at m other points, because we would like to
know how the data would behave at those points.

a) Write down the entries in A (write down a few entries so I can see you found the
pattern).

Assuming A has full rank, we can now invert it to get the desired coefficients of p:
c = A−1y. Now that we have those coefficients c, we would like to evaluate p at some
other points, say tk for k = 1, . . . ,m, to obtain the value of p there, that is, we want
to know fk = p(tk). So in Bc = f , c is the same as previously, and f is the vector of
desired values of p, the fk’s.

b) Write down what entries of B are (again, write down a few entries so I can see you
found the pattern).

Now let’s do this in one step: instead of using the vector c as an intermediary,
let’s just find f from y: f = Bc = BA−1y. So we multiply y by M = BA−1

to get the answer f : f=My. Notice that M depends on the xj ’s and tk’s! Let’s
build matrices A and B in Matlab now! Let h = 1/(n − 1), let x be the following
vector of n equispaced points between 0 and 1: x = 0, h, 2h, . . . , n. In Matlab, this
is “h=1/(n-1);x=(0:h:1);”. Then, in Matlab, build A column by column, that
is, type “A=zeros(n,n);for i=1:n,A(:,i)=x.^(i-1);end”. This should help you
verify your answer to (a).

c) Let n = 4, and construct in Matlab the appropriate A as just explained. Also, let
tk = h/2, 3h/2, . . . , 1 − h/2, so m = n − 1 (or “t=h/2:h:1-h/2” in Matlab), and
construct B in a similar way as you did with A. Show your A and B, and your code
for B. (Your code should work for generic n!)

You can type “format short e” in Matlab to see less significant digits if you want.
Now let’s construct M !

d) Let M = BA−1, or “M=B*inv(A)” in Matlab. What are the condition numbers of
A,B,M? (Type “cond(A)”, etc in Matlab.)



3

e) Let now n = 10, and construct A, B and M again. What are their condition numbers?
(Don’t show me the matrices, just their condition numbers.)

You might notice that A and B are badly conditioned (high condition number) but
M is not so bad: this is because Matlab is (sometimes) quite clever and knows that
A and B are bad, so it slightly modified them to make them “nicer” before inverting
A and multiplying it with B. So it didn’t use the true A and B...

f) To convince ourselves Matlab “cheated”, find the norm of the error between MA and
B (those should be equal since we have M = BA−1, so the error should be 0, or about
10−15 in Matlab... but it’s not): “norm(M*A-B)”. What is the norm of the error?

g) OK, so Matlab knows about bad conditioning! Try constructing A, B and M for
n = 20 now. Report the warning message you get! (If you don’t get an error, please
tell me ASAP, it could be that different operating systems work slightly differently.)

h) And finally, to convince ourselves that even Matlab can’t do anything against awful
conditioning, report the condition numbers of A and B (they should be really high
now, which is why you got a warning), and report again the norm of the error Matlab
makes in computing M (yes, it computed some M even though it gave you a warning).

I hope you are now convinced of two things: first, worrying about the conditioning of
your matrix can save you from making inaccurate calculations (i.e., lots of error). Second,
interpolating data at equispaced points is a terrible idea. If you ever have to do this, try
cubic splines; or use Chebyshev points (we will not discuss those techniques though, they are
beyond the scope of this class); or do not interpolate, but approximate such as least squares
does.



4

Question 3. (20 pts.) In this question, we will use eigenvalues to solve a system of masses
connected by springs! Read on if you want to know the setup. Otherwise, start at equation
(0.1). Again, just follow instructions!

Imagine you have 2 masses, both of mass m. The first is connected to a fixed wall by a
spring with stiffness constant k1 and the second mass is connected to another fixed wall by a
spring with the same stiffness constant, k1. Both masses are connected together by a third
spring, of stiffness constant k2. (If you don’t know what any of this means, you can look up
Hooke’s law, but this is not necessary for the class, or the pset.) The masses and springs are
constrained to lie along a line. Then, with x1 and x2 being the position along this line of the
first and second masses respectively, and x = (x1, x2), the equations of motion are:

ẍ =

(
−k1+k2

m
k2
m

k2
m −k1+k2

m

)
x =

(
−β α
α −β

)
x, α =

k2
m
, β =

k1 + k2
m

.

Now, because we expect the solution x to start to oscillate if the springs are stretched and
then released, we assume x = veiωt where v = (v1, v2) and the oscillation frequency ω do not
depend on t. Now we have to find v and ω! We calculate that ẍ = −ω2veiωt = λveiωt, with
λ = −ω2. And so we have an eigenvalue problem:

ẍ = λveiωt =

(
−β α
α −β

)
veiωt,

or

(0.1)

(
−β α
α −β

)
v = λv.

a) Solve equation (0.1). That is, find the eigenvalues λ (call them λ1, λ2) and eigenvec-

tors v (call them v1, v2) of the matrix

(
−β α
α −β

)
. Do not plug in values for α and

β, work in general!
You should have found 2 distinct, real eigenvalues, and two independent eigen-

vectors (we expect this because the matrix is symmetric - in fact you could make
the vectors orthonormal, but don’t bother.) Now let k1 = k2 = m = 1. Notice
how the matrix in (a) now looks like a second order difference matrix! That’s not a
coincidence, but we won’t go there.

b) Use your answer in (a) to find the frequencies of oscillation of the system, that is, say
what are ω1 > 0 and ω2 > 0, where −ω2

j = λj for k1 = k2 = m = 1.

c) Use your answer in (a) to find the frequencies of oscillation of the system, that is, say
what are ω1 > 0 and ω2 > 0, where −ω2

j = λj for k1 = .1, k2 = 1000, m = 1.

d) Would you say the matrix in (b) is badly conditioned? What about the matrix in
(c)? Give their condition numbers, using your answers from (b) and (c). What does
that imply for the ratio ω1/ω2 of the frequencies of oscillations for each case?

Bottom line is: when a system has two similar frequencies of oscillation as in (b), we
can compute the solution to that system accurately. However, when a system has two very
different frequencies of oscillation as in (c), then we start to make errors. Basically, it becomes
very difficult for the computer to tell how fast is the very fast oscillation, and how slow is
the very slow oscillation - it simply can’t deal with the different scales, fast and slow.


