18.085, PROBLEM SET 2, DUE 6/24 IN CLASS

Definitive version

1) (10 pts .) Prove whether or not the following matrices are invertible. If they are, then write down their inverse matrix.

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
l_{1} & 1 & 0 \\
l_{2} & 0 & 1
\end{array}\right),\left(\begin{array}{lll}
1 & 0 & 0 \\
l_{1} & 1 & 0 \\
l_{2} & 1 & 1
\end{array}\right),\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 110 & 0 \\
0 & 0 & 11110
\end{array}\right) .
$$

2) (10 pts.) By means of trial and error, write down $2 x 2$ matrices for each of the following properties:
a) $A B \neq B A$
b) $C^{2}=0$ and none of entries of C are 0 .
c) $D^{2}=-I$ and the entries of D are all real numbers.
d) $E^{T}=E^{-1}$.
3) (10 pts.) By hand, factor the following matrices into their LU decomposition

$$
\left(\begin{array}{lllll}
2 & 1 & 0 & 0 & 0 \\
1 & 2 & 1 & 0 & 0 \\
0 & 1 & 2 & 1 & 0 \\
0 & 0 & 1 & 2 & 1 \\
0 & 0 & 0 & 1 & 2
\end{array}\right),\left(\begin{array}{lll}
1 & 1 & 1 \\
2 & 2 & 2 \\
1 & 3 & 1
\end{array}\right)
$$

4) (10 pts) Let L and U be respectively the following two matrices

$$
L=\left(\begin{array}{lll}
4 & 0 & 0 \\
1 & 3 & 0 \\
1 & 2 & 1
\end{array}\right), U=\left(\begin{array}{lll}
2 & 3 & 5 \\
0 & 3 & 1 \\
0 & 0 & 1
\end{array}\right) .
$$

Solve the linear system $L U x=f$ as we explained in class, by splitting it into 2 different linear system and doing backward substitution, when

$$
f=\left(\begin{array}{l}
12 \\
12 \\
12
\end{array}\right)
$$

5) (10 pts .) Show that there is a unique parabola of the form $y=2 x^{2}+b x+c$ going through the points

$$
(0,-4),(1,1) .
$$

Does uniqueness still hold if we try instead to fit a parabola of the form $y=a x^{2}+$ $b x+c$?
Show that there is no parabola of the form $y=a x^{2}+b x+c$ that contains the points.

$$
(0,0),(1,1),(2,1),(1,2) .
$$

Try to find the best quadratic fit for these points.
Hint: use the method explained in class, by solving the linear system

$$
A^{t} A u=A^{t} b
$$

Do not use Matlab for this exercise!
6) (10 pts.) Using the Gram-Schmidt algorithm, find the orthonormal basis associated to each of the following bases of \mathbb{R}^{2} or \mathbb{R}^{3}

$$
\begin{aligned}
&\left\{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\}, \\
&\left\{\left(\begin{array}{c}
100 \\
0 \\
0
\end{array}\right),\left(\begin{array}{c}
1 \\
100 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
0 \\
2
\end{array}\right)\right\}, \\
&\left\{\binom{1 / 2}{\sqrt{3} / 2},\binom{-\sqrt{3}}{1}\right\} .
\end{aligned}
$$

7) (20 pts.) Write a Matlab code that given an $n \times n$ matrix A runs the Gram Schmidt process on the columns of A and actually tells whether or not the vector are dependent. Finally, compare the output that you get with the QR decomposition of A. Hint : to compute the QR decomposition of A, you just need to use the command
$[\mathrm{Q}, \mathrm{R}]=\mathrm{qr}(\mathrm{A})$
Also remember from what we discuss in class, that if you a vector v_{k} is dependent from the previous ones then once you run the Gram Schmidt algorithm on that vector you obtain the 0 vector. Hence, you won't be able to normalize such vector, as you would be dividing by 0 . This means, you should try to introduce a checking structure, after running Gram Schmidt, and before normalizing.
Apply your algorithm to the following matrices

$$
\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right),\left(\begin{array}{cccc}
1 & 0 & 3 & 1 \\
1 & 0 & 3 & 1 \\
0 & 0 & 3 & 1 \\
0 & 109 & 0 & 1
\end{array}\right)
$$

8) (15 pts.) Compute the LU decomposition for the following matrix

$$
\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Hint: you may want to take a look at the first two paragraphs of the chapter 1.3 in the book.

