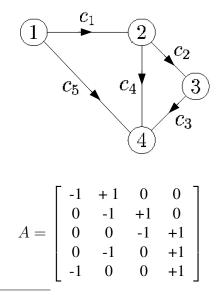
18.085 Quiz SOLUTIONS *

Question 1

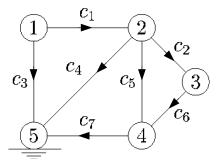

(15 points)

- **a** Is $A^T A$ always positive definite for every matrix A? NO!
- **b** If there is a test, on A, what is it? Test: A must have independent columns.

Question 2

(5 points)

What is the INCIDENCE matrix A for this graph?



^{*}PRACTICE QUIZ. NOT for assessment.

Question 3

(**30** points)

A network of nodes and edges is drawn. Edge number j has conductance $c_j > 0$. Node 5 is grounded (potential $u_5 = 0$). As usual, A is the incidence matrix and C is the diagonal matrix of conductances $(C_{j,j} = c_j)$.

- **a** List all positions (i, j) of the 4 by 4 matrix $K = A^T C A$ that have zero entries. No edge between: nodes 1 and 3; nodes 1 and 4. So $K_{1,3} = K_{3,1} = 0 = K_{1,4} = K_{4,1}$. Note: did not ask about $K_{unreduced}$ which would have $K_{3,5} = K_{5,3} = 0$
- **b** What is row 1 of K?

Row 1 comes from edge 1:

$$[c_1 + c_3, -c_1, 0, 0]$$

c Find as many independent solutions as possible to Kirchhoff's Law $A^T y = 0$.

$y_1 =$	1 0 -1 1 0	,	$y_2 =$	0 0 0 -1 1	,	$y_3 =$	0 1 0 0 -1	
	0 0 0			1 0 1			-1 1 0	

d What is 'the trick' that proves $u^T K u \ge 0$ for every vector u?

$$u^{T}Ku = (u^{T}A^{T})C(Au) = e^{T}Ce = c_{1}e_{1}^{2} + \dots + c_{m}e_{m}^{2}$$