
Computational Science & Engineering I - Fall 2015 PSET 5

Problem Set 5
Due: November 19, 2015 (E18-366, 1:00pm)

Name (Print):

Instructions:

• Include a printed copy of this document with your solutions.

• Organize your work, in a neat and coherent way. Work without a clear ordering will
receive very little credit.

• A correct answer, unsupported by calculations, explanation, or algebraic work will
receive very little credit; an incorrect answer supported by substantially correct calcu-
lations and explanations will still receive partial credit.

• Box your final answer to each problem.

• All the problems are worth the same amount (20 points/problem).

Problem 1 (T.F.):
(Suppose ~F is an irrotational force field, i.e. curl ~F = 0, defined only on certain region of
the plane, then in general we cannot conclude that ~F has a potential.
(1) Let

~F1 =
(

y

x2 + y2 ,
−x

x2 + y2

)

be a force field defined on the punctured plane (plane minus origin). Show that curl ~F1 = 0.
(2) Compute the work done by ~F1 for a particle looping around the unit circle counterclock-
wise.
(3) Is ~F1 a gradient vector field (conservative force field)? If yes, find a potential function.
(4) Do (1), (2) and (3) for

~F2 =
(

x

x2 + y2 ,
y

x2 + y2

)
.

Problem 2 (T.F.):
(1) ([Section 3.3 Problem 18]) The curl operator is not invertible. Its nullspace contains
all gradient fields v = grad u. Take the “determinant” of the 3 by 3 curl matrix in (29)
to show that formally det(curl) = 0. Find two “vector potentials” S1 and S2 whose curl is
(2x, 3y,−5z).
(2) Recall that for a smooth function f = f(x, y, z) vanishing at infinity, its Fourier transform
f̂ = f̂(ξx, ξy, ξz) is a function defined by

f̂(ξx, ξy, ξz) =
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

f(x, y, z)e−i(xξx+yξy+zξz)dxdydz.
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Similarly, for a vector field g = (g1, g2, g3), we define its Fourier transform (which is also a
vector field) by taking Fourier transform componentwise

ĝ = (ĝ1, ĝ2, ĝ3).

Assume we already know that (this can be easily proved by integration by part)

f̂x = iξx · f̂ , f̂y = iξy · f̂ , f̂z = iξz · f̂ ,

where fx is the partial derivative of f with respect to x and i =
√
−1. Show that formally

the Fourier transform of ∇ is iE , where E is the so-called Euler vector field

E = (ξx, ξy, ξz),

in the sense that

∇̂f = ĝrad f = iE · f̂ ,

∇̂ × g = ĉurl g = iE × ĝ.

(3) As we see in (2), the Fourier transform has the advantage that it transforms partial deriva-
tives to algebraic operations (multiplication). Use Fourier transform to give an explanation
for the fact that the nullspace of the curl operator are exactly those gradient fields.

Problem 3 (A.L.):
From the text, the Green’s function of the Laplacian on the plane with source at w = u+ iv
is

G(z, w) = − 1
2π log |z − w|, (1)

where z = x+ iy and |z|2 is defined as x2 + y2 = (x+ iy)(x− iy) = zz̄ where z = x− iy. I.e.

∆G(z, w) =
(
∂2

∂x2 + ∂2

∂y2

)
G(z, w) = δ(z − w). (2)

From this formula compute the Green’s function of the Laplacian on the upper half plane
(for y > 0 when z = x + iy). Hint 1: remember you want a function that is zero on the
boundary (the line where y = 0) but still satisfies ∆G(z, w) = δ(z − w). Hint 2: compare
the values of G(z, w) and G(z, w̄) when z = x, are they equal? Remember, geometrically w̄
is at u− iv, that is, reflecting w across the real line gives w̄. Can you combine G(z, w) and
G(z, w̄) to get something that is zero on the line z = x?

Problem 4 (A.L.):
Check that for the polynomial f(x, y) = x2 − y2, we have the following property:

1
2πr

∫
Cr,(u,v)

f(γ)dγ = f(u, v), (3)
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where Cr,(u,v) is the circle of radius r centered at the point (u, v). That is, show that the
average of f on the circle Cr,(u,v) is the value f at the center of the circle. This property is
satisfied by every solution to Laplace’s equation, it is called the mean value property. Hint:
use polar coordinates and the fact that every point on Cr,w is of the form (u+r cos θ, v+r sin θ)
where 0 ≤ θ ≤ 2π.

Problem 5 (S.C.):
(1) Recall that the Kronecker product k(A,B) of two square matrices A and B of size n is the
square matrix of size n2 where aij is replaced by the block aijB. Using block multiplications,
show that k(A,B)k(C,D) = k(AC,BD). Deduce what is k(A,B)−1 when both A and B are
invertible ? What is k(A,B)T ?

(2) Let us consider the unit square in the plane and discretize it in a grid of increment 1
n+1 .

Given boundary conditions on the nodes, we want to solve the Laplace equation ∆u = −4.
Recall how this problem translates into a linear equation MU = F using finite differences.
What are the nice properties satisfied by M ? In particular, give its eigenvectors and cor-
responding eigenvalues. Recall the 3 steps required to solve MU = F using Fast Fourier
Transform ( FFT)

(3) We now use the following boundary conditions : u(0, i
n+1) = u( i

n+1 , 0) = 1 − ( i
n+1)2

and u(1, i
n+1) = u( i

n+1 , 1) = −( i
n+1)2. Let n = 5. What is Fij ? Using FFT with MATLAB,

compute U . What is U33 ? If we take n to be 2k−1 for some integer k what will Ukk tend to ?

Problem 6 (S.C.):
(1) Let D be a domain divided into triangles t. Let S be the set of all the vertices of these
triangles and the midpoints of their edges and f a function from S to R. For any triangle t
in D, let φt be a quadratic polynomial in x and y which agrees with f(s) for all s ∈ S ∩ t.
Why can we do it ? If t and t′ share an edge e, do φt and φt′ agree on e ?

(2) Using Persson’s code ( page 303 of the book or at http://math.mit.edu/ gs/cse/codes/femcode.m),
solve the equation ∆u = −1 with u = 0 on the standard unit square. Take h = 1

4 . Print the
mesh information in the lists p and t and b ( boundary node numbers). Display Kb and Fb
and Ub.
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