18.085 Homework 6

Boris Lipchin - 49

1 3.3:1

$$\begin{cases} v_1 = \frac{\partial u}{\partial x} \\ v_2 = \frac{\partial u}{\partial y} \end{cases} \to \begin{cases} u(x, y) = x \\ w_1 = \frac{\partial s}{\partial y} \\ w_2 = -\frac{\partial s}{\partial x} \end{cases}$$

2 3.3:7

Using $w = (x^2, y^2)$.

$$div(w) = 2x + 2y$$

$$\begin{cases}
w_1 = \frac{\partial s}{\partial y} \\
w_2 = -\frac{\partial s}{\partial x}
\end{cases} \rightarrow div(w) = \frac{\partial w_1}{\partial x_1} + \frac{\partial w_2}{\partial x_2} = \frac{\partial^2 s}{\partial x \partial y} - \frac{\partial^2 s}{\partial x \partial y} = 2x + 2y \neq 0$$

$$w = (w^2 - x^2)$$

Using $w = (y^2, x^2)$.

$$\begin{cases} y^2 = \frac{\partial s}{\partial y} \\ x^2 = -\frac{\partial s}{\partial x} \end{cases} \rightarrow \begin{cases} s_1 = -\frac{1}{3}x^3 \\ s_2 = \frac{1}{3}y^3 \end{cases} \rightarrow s = -\frac{1}{3}x^3 + \frac{1}{3}y^3$$

3 3.3:8

 $u = x^2$ then $w = div(u) = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \end{bmatrix}$. Show that:

$$\int \int_{s} \nabla \Delta u dx dy = \int_{c} n \cdot \nabla u ds$$

Focus on the LHS:

$$\Delta u = \begin{bmatrix} 2x & 0 \end{bmatrix}$$

$$\nabla \Delta u = 2$$

$$\int_{-1}^{1} \int_{-1}^{1} 2dx dy = \int_{-1}^{1} 2x \Big|_{-1}^{1} dy = \int_{-1}^{1} 4dy = 8$$

Focus on the RHS. By inspection the upper and lower sides of the square (parallel to the x axis) are normal to the direction of the potential lines, and will not experience any flow at all. We will calculate the left and right sides individually.

$$\int_{C} n \cdot \nabla u ds = \int_{c} n \cdot \begin{bmatrix} 2 & 0 \end{bmatrix} ds = \int_{c_1} \begin{bmatrix} -1 & 0 \end{bmatrix} \begin{bmatrix} 2x \\ 0 \end{bmatrix} ds + \int_{c_2} \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 2x \\ 0 \end{bmatrix} ds$$

The two line integrals will be on the region of t = [-1, 1] with the following parameterizations: y = t; x = 1 and y = t; x = -1.

Thus the final integrals will be:

$$\int_{-1}^{1} \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} 2*1\\0 \end{bmatrix} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dx}{dt}\right)^{2}} + \int_{-1}^{1} \begin{bmatrix} -1 & 0 \end{bmatrix} \begin{bmatrix} 2*-1\\0 \end{bmatrix} \sqrt{\left(\frac{dx}{dt}\right)^{2} + \left(\frac{dx}{dt}\right)^{2}} = \int_{-1}^{1} 2\sqrt{1+0} + \int_{-1}^{1} 2\sqrt{1+0} = 8$$

So we have proved the Divergence Theorem for this particular velocity function.

4 3.3:11

Using v = (0, x) and $v = \nabla u = (u_x, u_y)$. LHS:

$$\int \int \left(\frac{\partial v_2}{\partial x} - \frac{\partial v_1}{\partial y}\right) dx dy = \int \int (1-0) dx dy = xy + C$$

RHS:

$$\int v_1 dx + v_2 dy = \int x dy = xy + C$$

The two sides agree.

5 3.4:2

Using the boundary condition requirement itself solves the Poisson equation. If $x^2 + y^2 - 1 = 0$ we have $u_{xx} = 2$, and $u_{yy} = 2$, so $u_{xx} + u_{yy} = 4$.

6 3.4:4

We have given $u = r \cos \theta + \frac{\cos \theta}{r}$ and the Laplace's equation in cylindrical coordinates is $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}$.

$$\frac{\partial u}{\partial r} = \cos\theta - \frac{\cos\theta}{r^2}$$
$$\frac{\partial u}{\partial \theta} = -r\sin\theta - \frac{\sin\theta}{r}$$
$$\frac{\partial^2 u}{\partial r^2} = \frac{2\cos\theta}{r^3}$$
$$\frac{\partial^2 u}{\partial \theta^2} = -r\cos\theta - \frac{\cos\theta}{r}$$

Plugging everything in gives us:

$$\frac{2\cos\theta}{r^3} + \frac{1}{r}\left(\cos\theta - \frac{\cos\theta}{r^2}\right) + \frac{1}{r^2}\left(-r\cos\theta - \frac{\cos\theta}{r}\right) = \\ = \frac{2\cos\theta}{r^3} + \frac{\cos\theta}{r} - \frac{\cos\theta}{r^3} - \frac{\cos\theta}{r} - \frac{\cos\theta}{r^3} = 0$$

Thus the solution does indeed solve Laplace's equation. Using $r^2 = x^2 + y^2$ and $r \cos \theta = x$ we get u(x, y):

$$u(x,y) = x + \frac{x}{x^2 + y^2}$$
$$u_x(x,y) = 1 + \frac{y^2 - x^2}{(x^2 + y^2)^2}$$
$$u_y(x,y) = -\frac{2xy}{(x^2 + y^2)^2}$$

Using the vector field of [x, y] under the constraint that $x^2 + y^2 = 1$, we have:

$$v \cdot n = \begin{bmatrix} u_x & u_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = x + \frac{xy^2 - x^3}{(x^2 + y^2)^2} - \frac{2xy^2}{(x^2 + y^2)^2} = x - xy^2 - x^3 = x(1 - y^2 - x^2) = x(1 - 1) = 0$$

This proves that our solution is normal to the unit circle.

7 3.4:5

Using $u = \log r$ and Laplace's equation in cylindrical coordinates: $\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{1}{r^2} \frac{\partial^2 u}{\partial \theta^2}$.

$$\begin{split} &\frac{\partial u}{\partial r} = \frac{1}{r} \\ &\frac{\partial^2 u}{\partial r^2} = -\frac{1}{r^2} \\ &-\frac{1}{r^2} + \frac{1}{r}\frac{1}{r} + 0 = 0 \end{split}$$

Laplace's equation holds for $u = \log r$.

If we use a $z = re^{i\theta}$ and we take the log, we get $\log z = \log r + i\theta$. Since $re^{i\theta}$ solves Laplace's equation, so does $\log z$, therefore $s = \theta$ for this case.

Using $U = \log r^2$ we get:

$$\frac{\partial U}{\partial r} = \frac{1}{r^2} 2r = \frac{2}{r}$$
$$\frac{\partial^2 U}{\partial r^2} = -\frac{2}{r^2}$$
$$-\frac{2}{r^2} + \frac{1}{r} \frac{2}{r} + 0 = 0$$

Laplace's equation holds for $U = \log r^2$.

Using a $Z = z^2 = r^2 e^{2i\theta}$ taking the log we get: $\log Z = \log r^2 + 2i\theta$. Therefore the $S = 2\theta$.

8 Extra

a. What is $v(x,y) = \nabla u$?

$$\begin{aligned} u(x,y) &= x + y - x^2 + y^2 \\ v(x,y) &= \nabla u = \begin{bmatrix} \frac{\partial u}{\partial x} \\ \frac{\partial u}{\partial y} \end{bmatrix} u(x,y) = \begin{bmatrix} 1 - 2x \\ 1 + 2y \end{bmatrix} \end{aligned}$$

b. What is the stream function s(x, y)?

$$\frac{\partial u}{\partial x} = \frac{\partial s}{\partial y} = 1 - 2x$$
$$\frac{\partial u}{\partial y} = -\frac{\partial s}{\partial x} = 2y + 1$$
$$s_1 = y - 2xy + f(x)$$
$$s_2 = -2yx - x + f(y)$$

Therefore s(x, y) = -x + y - 2xy.

c. Find $g = \nabla s$

$$g = \nabla s(x, y) = \begin{bmatrix} \frac{\partial s}{\partial x} \\ \frac{\partial s}{\partial y} \end{bmatrix} s(x, y) = \begin{bmatrix} -2y - 1 \\ -2x + 1 \end{bmatrix}$$

Verifying that $v \perp g$:

$$v \cdot g^{T} = \begin{bmatrix} 1 - 2x \\ 1 + 2y \end{bmatrix} \begin{bmatrix} -2y - 1 & -2x + 1 \end{bmatrix}$$
$$= (1 - 2x)(-2y - 1) + (1 + 2y)(-2x + 1)$$
$$= -2y - 1 + 4xy + 2x - 2x + 1 - 4xy + 2y = 0$$

Since the dot product is zero, the two must be orthogonal.

d. Identify curve types

Both types are hyperbolas, just of different kinds. $x^2 - y^2 + 2xy = c$ is one type of hyperbola, and $y = \frac{C}{-2x+1} + \frac{x}{-2x+1}$ is another type.