
18.085 Computational Science and Engineering 
Homework 3 

1. 6. 27 

1) Positive definiteness of M and N 

Assume that H is m x m and K is n x n square, and both of them are positive definite.  

!  and !  

Positive definiteness can be shown by observing pivots for each matrices. Assume that the upper 
triangular matrices by row operation for H and K are !  and !  respective, we can write the 
upper triangular matrices for M and N as following. 

!  and !  

! Hence, the pivots of the matrix M consists of pivots of the matrix H and K. Since H and K are 
positive definite and have m and n positive pivots respectively, all pivots of the matrix M is also 
all positive. Therefore, the matrix M is positive definite. 

However, according to the upper triangular matrix of N, the matrix N has n zero pivots in 
addition to n pivots of the matrix K. Therefore, the matrix N is positive semidefinite rather than 
positive definite. 

2) Connecting pivots of H and K to pivots of M and N 

As shown above, pivots of the matrix M consists of pivots of H and K while pivots of the matrix 
N is composed of pivots of K and n zero pivots. 

!   and  !  

M = H 0
0 K

⎛

⎝⎜
⎞

⎠⎟
N = K K

K K
⎛

⎝⎜
⎞

⎠⎟

UH UK

UM =
UH 0

0 UK

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

UN =
UK UK

0 0

⎛

⎝
⎜

⎞

⎠
⎟

pivot(M ) = pivot(H ) ∪ pivots(K ) pivot(N ) = pivot(K ) ∪ {0, ! ,0
n

!"# $# }
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3) Connection eigenvalues of H and K to eigenvalues of M and N 

Assume that eigenvalues of H and K are defined as following. 

!  

For the matrix M, we can show the eigenvalues for the matrix M based on following 
observations. 

!  

Therefore, the matrix M has m+n eigenvalues and corresponding eigenvectors which are 

composed of !  and !  for eigenvalues, and !  and !  for eigenvectors 

respectively. Note that all eigenvalues for H and K are positive, the matrix M also has all positive 
eigenvalues which guarantees the positive definiteness of the matrix M again. 

!  

For the matrix N, we can do the similar approach. 

!  

!  where !  are !  matrices 

From the above observation, the two times of the eigenvalues of the matrix K are also n 

eigenvalues of the matrix N and !  are corresponding eigenvectors. For the second 

part, we can see that all !  !  matrices can be decomposed into n linearly independent 
column matrices with size of ! . 

Hui
H = λi

Hui
H where ui

H are eigenvectors for H , and λi
H are eigenvalues for H ( for i = 1… m)

Kuj
K = λ j

Ku j
K where u j

K are eigenvectors for H , and λ j
K are eigenvalues for K ( for j = 1… n)

⎧
⎨
⎪

⎩⎪

H 0
0 K

⎛

⎝⎜
⎞

⎠⎟
ui
H

0

⎛

⎝
⎜

⎞

⎠
⎟ =

Hui
H

0

⎛

⎝
⎜

⎞

⎠
⎟ = λi

H ui
H

0

⎛

⎝
⎜

⎞

⎠
⎟

H 0
0 K

⎛

⎝⎜
⎞

⎠⎟
0
uj
K

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

0
Kuj

K

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= λ j

K 0
uj
K

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

λi
H λ j

K [ ui
H 0 ]T [ 0 uj

K ]T

eig(M ) = λi
H and λ j

K for i = 1 ! m and j = 1 ! n

K K
K K

⎛
⎝⎜

⎞
⎠⎟

uj
K

u j
K

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

2Kuj
K

2Kuj
K

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 2λ j

K
u j
K

u j
K

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

K K
K K

⎛
⎝⎜

⎞
⎠⎟

uk
−uk

⎛

⎝
⎜

⎞

⎠
⎟ = 0 = λ

uk
−uk

⎛

⎝
⎜

⎞

⎠
⎟ uk n ×1

[ uj
K u j

K ]T

n ×1 uk
n ×1
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!  

Hence, the matrix N has n zeros eigenvalues. This observation is also agrees with the previous 
observation that the matrix N is semi-definite. 

!  

4) Cholesky factorization of M 

Assume A and B are Cholesky factorization of H and K respectively. 

!  and !  where !  and !  

Then, assume that !  where the matrix C is defined as following. 

!  

!  

Therefore, C is right Cholesky factorization of M based on chol(H) and chol(K). Note that the 
matrix N does not have Cholesky factorization because it is singular. 

2. 1. 3 

According to the textbook, ! for fixed-free system is 

!  

!  and !  can be found by row operation. 

uk =

1
0
0
!
0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

c1 +

0
1
0
!
0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

c2 +!+

0
!
0
1
0

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

cn−1 +

0
!
0
0
1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

cn

eig(N ) = 2λ j
K and n zero eigenvaleus for j = 1 ! n

chol(H ) = A chol(K ) = B AT A = H BT B = K

chol(M ) = C

C = A 0
0 B

⎛
⎝⎜

⎞
⎠⎟
=

chol(H ) 0
0 chol(K )

⎛

⎝
⎜

⎞

⎠
⎟

CTC = AT 0
0 BT

⎛

⎝
⎜

⎞

⎠
⎟

A 0
0 B

⎛
⎝⎜

⎞
⎠⎟
= AT A 0

0 BT B

⎛

⎝
⎜

⎞

⎠
⎟ =

H 0
0 K

⎛
⎝⎜

⎞
⎠⎟
= M

ATCA

ATCA =
1 −1 0
0 1 −1
0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

c1 0 0
0 c2 0
0 0 c3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1 0 0
−1 1 0
0 −1 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
=

c1 + c2 −c2 0
−c2 c2 + c3 −c3
0 −c3 c3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

ATCA( )−1 A−1C−1(AT )−1
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1) !  

!  

!  

2) !  

First, we need to find !  and ! . 

!  

!  

!  

The result is the same as for ! . 

ATCA( )−1

c1 + c2 −c2 0
−c2 c2 + c3 −c3
0 −c3 c3

1 0 0
0 1 0
0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⇒

c1 0 0
−c2 c2 0
0 −c3 c3

1 1 1
0 1 1
0 0 1

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⇒

1 0 0
0 1 0
0 0 1

1
c1

1
c1

1
c1

1
c1

1
c1
+ 1
c2

1
c1
+ 1
c2

1
c1

1
c1
+ 1
c2

1
c1
+ 1
c2

+ 1
c3

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

(ATCA)−1 =

1
c1

1
c1

1
c1

1
c1

1
c1
+ 1
c2

1
c1
+ 1
c2

1
c1

1
c1
+ 1
c2

1
c1
+ 1
c2

+ 1
c3

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

A−1C−1(AT )−1

A−1 (AT )−1

1 0 0
−1 1 0
0 −1 1

1 0 0
0 1 0
0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
⇒

1 0 0
0 1 0
0 0 1

1 0 0
1 1 0
1 1 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= A−1

1 −1 0
0 1 −1
0 0 1

1 0 0
0 1 0
0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
⇒

1 0 0
0 1 0
0 0 1

1 1 1
0 1 1
0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= (AT )−1

A−1C−1(AT )−1 =
1 0 0
1 1 0
1 1 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1
c1

0 0

0 1
c2

0

0 0 1
c3

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

1 1 1
0 1 1
0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
=

1
c1

0 0

1
c1

1
c2

0

1
c1

1
c2

1
c3

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

1 1 1
0 1 1
0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
=

1
c1

1
c1

1
c1

1
c1

1
c1
+ 1
c2

1
c1
+ 1
c2

1
c1

1
c1
+ 1
c2

1
c1
+ 1
c2

+ 1
c3

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

ATCA( )−1
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As for special case, when !  and ! , we can put c = 1 for above results. 

!   and  !  

 2. 1. 7 

For fixed-fixed system with !  and ! , the element matrix K is 

!  

To show the invertibility of the matrix K, we can find the upper triangular matrix !  by row 
operation. 

!  with pivots of three 1s. 

Then the determinant of the matrix K is ! . Since the determinant is 

positive, the matrix K is invertible. for ! , the solution u is 

!  

!  

Physically, the fixed-free system becomes two separate systems, one is a fixed-free system with 
one mass and one spring, and another is free-fixed system with two masses and two springs 
(though the second free-fixed system is in reverse configuration). 

ci = 1 C = C−1 = I

ATCA =
2 −1 0
−1 2 −1
0 −1 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ (ATCA)−1 =

1 1 1
1 2 2
1 2 3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

c1 = c3 = c4 = 1 c2 = 0

K = ATCA =
1 −1 0 0
0 1 −1 0
0 0 1 −1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

1 0 0
−1 1 0
0 −1 1
0 0 −1

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=
1 0 0 0
0 0 −1 0
0 0 1 −1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1 0 0
−1 1 0
0 −1 1
0 0 −1

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=
1 0 0
0 1 −1
0 −1 2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

UK

UK =
1 0 0
0 1 −1
0 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

det(K ) = 1×1×1= 1> 0

Ku = f = [ 1 1 1 ]T

Ku =
1 0 0
0 1 −1
0 −1 2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

u1
u2
u3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= f =

1
1
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
⇒

1
0
0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
u1 +

0
1
−1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
u2 +

0
−1
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
u3 =

1
1
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

u1 = 1
u2 − u3 = 1
−u2 + 2u3 = 1

⎧
⎨
⎪

⎩⎪
⇒ u1 = 1, u2 = 3, u3 = 2 ⇒ u =

1
3
2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
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 2. 1. 8 

For free-free spring system, the element matrix K can be calculate by the definition ! . 

! ,  !  and  !  

the force-displacement equation for the system is !  

!  where !  = force for ith mass exerted by jth spring component 

(a) Assemble K for spring 2 and 3 into eq. (11) for free-free solution 

In the system, there are three masses (mass 1, 2 and 3) and two springs (spring 2 and 3) with 
three corresponding displacement ! , !  and ! . For the first two masses connected by spring 2, 

!  

For the masses 2 and 3 connected by spring 3,  

!  

Combining two results, the force-displacement for the free-free system is 

!  

which is the same as the eq. (11). 

K = ATCA

A = −1 1( ) C = c K = ATCA = c −1
1

⎛

⎝⎜
⎞

⎠⎟
−1 1( ) = c 1 −1

−1 1
⎛

⎝⎜
⎞

⎠⎟

f1,1
f2,1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= c 1 −1

−1 1
⎛
⎝⎜

⎞
⎠⎟

u1
u2

⎛

⎝
⎜

⎞

⎠
⎟ fi, j

u1 u2 u3

f1,2
f2,2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= c2

1 −1
−1 1

⎛
⎝⎜

⎞
⎠⎟

u1
u2

⎛

⎝
⎜

⎞

⎠
⎟ expand for 3 masses⎯ →⎯⎯⎯⎯⎯⎯

f1,2
f2,2
0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

c2 −c2 0
−c2 c2 0
0 0 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

u1
u2
u3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

f2,3
f3,3

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= c3

1 −1
−1 1

⎛
⎝⎜

⎞
⎠⎟

u2
u3

⎛

⎝
⎜

⎞

⎠
⎟ expand for 3 masses⎯ →⎯⎯⎯⎯⎯⎯

0
f2,3
f3,3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

0 0 0
0 c3 −c3
0 −c3 c3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

u1
u2
u3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

f1,2
f2,2 + f2,3
f3,3

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=
c2 −c2 0
−c2 c2 + c3 −c3
0 −c3 c3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

u1
u2
u3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
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(b) Include K for spring 1 to find K for fixed-free system as the eq. (8). 

For this system, there is additional spring 1 which is fixed at one end and connected to the mass 
1 at the other end. For mass 1 and spring 1,  

!  

If we simplify the matrix by eliminating zero row and column, 

!  

Combining this result with the result in (a), we can find the force-displacement relationship in 
the fixed-free system. 

!  

which is the same as the eq. (8). 

(c) Place spring 4 to find K for fixed-fixed solution as the eq. (7). 

For this system, there is additional spring 4 which is connected to the mass 3 at one end and 
fixed at the other end. For mass 3 and spring 4, 

!  

If we simplify the matrix by eliminating zero row and column, 

0
f1,1

⎛

⎝
⎜

⎞

⎠
⎟ = c1

1 −1
−1 1

⎛
⎝⎜

⎞
⎠⎟

0
u1

⎛

⎝
⎜

⎞

⎠
⎟

expand⎯ →⎯⎯

0
f1,1
0
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

c1 −c1 0 0
−c1 c1 0 0
0 0 0 0
0 0 0 0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

0
u1
u2
u3

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

f1,1
0
0

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
=

c1 0 0
0 0 0
0 0 0

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

u1
u2
u3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

f1,1 + f1,2
f2,2 + f2,3
f3,3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

c1 + c2 −c2 0
−c2 c2 + c3 −c3
0 −c3 c3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

u1
u2
u3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

f3,4
0

⎛

⎝
⎜

⎞

⎠
⎟ = c4

1 −1
−1 1

⎛
⎝⎜

⎞
⎠⎟

u3
0

⎛

⎝
⎜

⎞

⎠
⎟

expand⎯ →⎯⎯

0
0
f3,4
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0 0 0 0
0 0 0 0
0 0 c4 −c4
0 0 −c4 c4

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

u1
u2
u3
0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
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!  

Combining this result with the result in (b), we can find the force-displacement relationship in 
the fixed-fixed system. 

!  

which is the same as the eq. (7). 

2. 3. 7 

With b = (4, 1, 0, 1) at x = (0, 1, 2, 3), solve normal equation for coefficient !  in the 
nearest line C + Dx. 

The system equation is 

!         !    !  

For the least square solution ! , !  is satisfied. 

!  !  !  

!   where  !  

!  

Therefore, C = 3 and D = -1, and the nearest line is ! . 

0
0
f3,4

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
=

0 0 0
0 0 0
0 0 c4

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

u1
u2
u3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

f1,1 + f1,2
f2,2 + f2,3
f3,3 + f3,4

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

c1 + c2 −c2 0
−c2 c2 + c3 −c3
0 −c3 c3 + c4

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

u1
u2
u3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

û = (C, D)

Au = b ⇒

1 0
1 1
1 2
1 3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

u1
u2

⎛

⎝
⎜

⎞

⎠
⎟ =

4
1
0
1

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

û AT Aû = ATb

AT Aû = ATb ⇒ 1 1 1 1
0 1 2 3

⎛
⎝⎜

⎞
⎠⎟

1 0
1 1
1 2
1 3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

C
D

⎛
⎝⎜

⎞
⎠⎟
= 1 1 1 1

0 1 2 3
⎛
⎝⎜

⎞
⎠⎟

4
1
0
1

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

⇒ 4 6
6 14

⎛
⎝⎜

⎞
⎠⎟

C
D

⎛
⎝⎜

⎞
⎠⎟
= 6

4
⎛
⎝⎜

⎞
⎠⎟

(AT A)−1 = 4 6
6 14

⎛
⎝⎜

⎞
⎠⎟

−1

= 1
20

14 −6
−6 6

⎛
⎝⎜

⎞
⎠⎟

û = C
D

⎛
⎝⎜

⎞
⎠⎟
= (AT A)−1ATb = 1

20
14 −6
−6 4

⎛
⎝⎜

⎞
⎠⎟

6
4

⎛
⎝⎜

⎞
⎠⎟
= 3

−1
⎛
⎝⎜

⎞
⎠⎟

y = 3− x
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2. 3. 8 

In the previous problem, the projection ! . Check that those four numbers do lie on the line 
C+Dx, and compute the error !  and verify ! . 

From the result of 2. 3. 7, 

!  

It is obvious that points (0, 3), (1, 2), (2, 1) and (3, 0) lie on the line b = 3 - x. For the error term, 

!  where !  

2. 3. 24 

Find the plane that gives the best fit to the 4 values b = (0 ,1 ,3, 4) at the corners (1, 0), (0, 1), (-1, 
0) and (0, -1) of a square. For the equation C + Dx + Ey = b, !  where ! . At the 
center of the square (0, 0), show that C + Dx + Ey = avg(b) = avg(0, 1, 3, 4). 

The system equation is 

!        !           !  

For the least square solution ! , !  is satisfied. 

!   !   !  

P = Aû
e = b − P = b − Aû ATe = 0

P = Aû =

1 0
1 1
1 2
1 3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

3
−1

⎛
⎝⎜

⎞
⎠⎟
=

3
2
1
0

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

e = b − P =

4
1
0
1

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

−

3
2
1
0

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=

1
−1
−1
1

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

ATe = 1 1 1 1
0 1 2 3

⎛
⎝⎜

⎞
⎠⎟

1
−1
−1
1

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

= 0
0

⎡

⎣
⎢

⎤

⎦
⎥

Au = b u = (C,D,E)

Au = b ⇒

1 1 0
1 0 1
1 −1 0
1 0 −1

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

u1
u2
u3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

0
1
3
4

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

û AT Aû = ATb

AT Aû = ATb ⇒
1 1 1 1
1 0 −1 0
0 1 0 −1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1 1 0
1 0 1
1 −1 0
1 0 −1

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

C
D
E

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ =

1 1 1 1
1 0 −1 0
0 1 0 −1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

0
1
3
4

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
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!   where  !  

!  

Therefore, C = 2, D = !  and E = ! , and the best fit plane is ! . To check the 

average condition, 

!  

2. 4. 1 

What are the incidence matrices !  and !  for the graphs? Find ! . 

1) For triangular graph 

!  where !  

2) For square graph 

!  

⇒
4 0 0
0 2 0
0 0 2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

C
D
E

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
=

8
−3
−3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ (AT A)−1 =

4 0 0
0 2 0
0 0 2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

−1

=

1
4

0 0

0 1
2

0

0 0 1
2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟⎟

û =
C
D
E

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
= (AT A)−1ATb =

1
4

0 0

0 1
2

0

0 0 1
2

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟⎟

8
−3
−3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
=

2

− 3
2

− 3
2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

− 3
2

− 3
2

2 − 3
2
x − 3

2
y = b

b(0,0) = 2 − 3
2
⋅0 − 3

2
⋅0 = 2 = 0 +1+ 3+ 4

4
= Avg(b)

Atriangle Asquare AT A

Atriangle =
−1 1 0
0 −1 1
−1 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ AT A =

−1 0 −1
1 −1 0
0 1 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

−1 1 0
0 −1 1
−1 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
=

2 −1 −1
−1 2 −1
−1 −1 2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Asquare =

−1 1 0 0
−1 0 1 0
−1 0 0 1
0 −1 0 1
0 0 −1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

where AT A =

−1 −1 −1 0 0
1 0 0 −1 0
0 1 0 0 −1
0 0 1 1 1

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

−1 1 0 0
−1 0 1 0
−1 0 0 1
0 −1 0 1
0 0 −1 1

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

3 −1 −1 −1
−1 2 0 −1
−1 0 2 −1
−1 −1 −1 3

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟
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2. 4. 2 

Find all vectors in the nullspace of !  and its traspose. 

From the result of 2. 4. 1, for ! , 

!  

! , !  and !  that is !  !  

Hence the nullspace solution is !  for arbitrary constant c. 

For its transpose ! , 

!  

! , !  and !  that is !  !  

Hence the nullspace solution is !  for arbitrary constant c. 

2. 4. 7 

What is !  for the four-node tree with all three edges into node 4? Ground a node to find 
the reduced (invertible) K and det(K). 
 
The four-note tree for this system is following. 
 

 

Atriangle

Atriangle

Au = 0 ⇒
−1 1 0
0 −1 1
−1 0 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

u1
u2
u3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

0
0
0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
⇒

−1
0
−1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
u1 +

1
−1
0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
u2 +

0
1
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
u3

−u1 + u2 = 0 −u2 + u3 = 0 −u1 + u3 = 0 u1 = u2 = u3 ⇒ N(u) =
c
c
c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

N(u) = [ c c c ]T

(Atriangle )
T

ATu = 0 ⇒
−1 0 −1
1 −1 0
0 1 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

u1
u2
u3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
=

0
0
0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
⇒

−1
1
0

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
u1 +

0
−1
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
u2 +

−1
0
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
u3

u1 + u3 = 0 −u2 + u3 = 0 u2 + u3 = 0 u1 = u2 = −u3 ⇒ N(u) =
c
c
−c

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

N(u) = [ c c −c ]T

K = ATCA
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!  

For the weight matrix C = diag( ! , ! , ! ) 

!  

To ground node 4, we have to eliminate the fourth row and column from the matrix K.  

!     where   !  

Note that, det(K) = 0 because the matrix K is linearly dependent (with rank(K) = 4 - 1= 3 < 4) 
and, therefore, singular.

A =
−1 0 0 1
0 −1 0 1
0 0 −1 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

c1 c2 c3

K = ATCA =

−1 0 0
0 −1 0
0 0 −1
1 1 1

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

c1 0 0
0 c2 0
0 0 c3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

−1 0 0 1
0 −1 0 1
0 0 −1 1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
=

c1 0 0 −c1
0 c2 0 −c2
0 0 c3 −c3
−c1 −c2 −c3 c1 + c2 + c3

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

Kreduced =
c1 0 0
0 c2 0
0 0 c3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

det(Kreduced ) = c1 × c2 × c3 = c1c2c3
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