18.085 Computational Science and Engineering
Homework 3

1.6.27
1) Positive definiteness of M and N

Assume that H is m x m and K is n x n square, and both of them are positive definite.

M=H0andN=KK
0 K K K

Positive definiteness can be shown by observing pivots for each matrices. Assume that the upper
triangular matrices by row operation for H and K are U,, and U, respective, we can write the

upper triangular matrices for M and N as following.

U 0 U U
U = " and U, = K K
U 0 0

K

Hence, the pivots of the matrix M consists of pivots of the matrix H and K. Since H and K are
positive definite and have m and n positive pivots respectively, all pivots of the matrix M is also
all positive. Therefore, the matrix M is positive definite.

However, according to the upper triangular matrix of N, the matrix N has n zero pivots in
addition to n pivots of the matrix K. Therefore, the matrix N is positive semidefinite rather than
positive definite.

2) Connecting pivots of H and K to pivots of M and N

As shown above, pivots of the matrix M consists of pivots of H and K while pivots of the matrix
N is composed of pivots of K and n zero pivots.

pivot(M) = pivot(H) U pivots(K) and pivot(N)= pivot(K) U {0, --- ,0}
NI

n
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3) Connection eigenvalues of H and K to eigenvalues of M and N

Assume that eigenvalues of H and K are defined as following.

i

{Huiﬁ =ll.HuiH where u' are eigenvectors for H, and l}.” are eigenvalues for H (for i=1... m)

Kuf:lfuf where uf are eigenvectors for H, and lf are eigenvalues for K (for j=1 ... n)

For the matrix M, we can show the eigenvalues for the matrix M based on following
observations.

H 0 uIH B Hu[H _ ulH H 0 0 | 0 Y 0
0 K )| o 0 1 o 0 K )| u Ku} g

Therefore, the matrix M has m+n eigenvalues and corresponding eigenvectors which are

composed of 4" and A} for eigenvalues,and [ u 0 1" and [ O u; ' for eigenvectors

respectively. Note that all eigenvalues for H and K are positive, the matrix M also has all positive
eigenvalues which guarantees the positive definiteness of the matrix M again.

eigtM)=2" and A for i=1 - m and j=1---n

For the matrix N, we can do the similar approach.

u u
kK ‘o l=0=2 | where u, are nx1 matrices
K K —u, —u,

From the above observation, the two times of the eigenvalues of the matrix K are also n

eigenvalues of the matrix N and [ uJK uf 1" are corresponding eigenvectors. For the second

part, we can see that all nx1 u, matrices can be decomposed into n linearly independent

column matrices with size of nx1.
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u.={ 0 |+ 0 |c;++| O |c,+| O |c,
: 1 0
0 0 1

Hence, the matrix N has n zeros eigenvalues. This observation is also agrees with the previous
observation that the matrix N is semi-definite.

eig(N)zZlf and n zero eigenvaleus for j=1---n

4) Cholesky factorization of M
Assume A and B are Cholesky factorization of H and K respectively.
chol(H)=A and chol(K)=B where A"/A=H and B'B=K

Then, assume that chol(M )= C where the matrix C is defined as following.

Co A 0 | | chol(H) 0
o B 0 chol(K)

T T
C'C = A0 A0 |_| AA O _| H 0 |_ M
0 B 0 B 0 B'B 0 K
Therefore, C is right Cholesky factorization of M based on chol(H) and chol(K). Note that the
matrix N does not have Cholesky factorization because it is singular.

2.1.3

According to the textbook, A" CA for fixed-free system is

1 -1 0 g 0 0 1 0 0
A'cA=| 0 1 -1 0 ¢, O -1 1 0 |=| -¢ c¢+c —c
00 1 )loo0e |l O -11 0 - e

(ATCA)_1 and A"'C™'(A")™ can be found by row operation.
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1) (A7cA)”

ate  —6 100 ¢ 1
¢, CGtc —¢ |0 1 0 |=| ¢ ¢ 0[]0
0 —c, ¢, |0 01 0 —-c, ¢ |0
1 1
¢ ¢
1 1 1
A'cayt=| — —+—
Cl Cl C2
1 1.1
¢ ¢ G
2) A—lc—l(AT)—l
First, we need to find A™" and (A")™.
1 0 0|1 0 O 1
-1 1 00 1 0 [=| 0
0O -1 1[0 0 1 0
1 -1 0|1 0O 1
0O 1 =10 1 0 |=] 0
0O 0 1[0 01 0
1y, 1
C, q
1 00 1 1 1 1 1
Alct@n!=l o 0 =0 o= <
111 : 0 0 1 !
0 o L 1
Cy o8

-1

The result is the same as for (ATCA)
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As for special case, when ¢;=1 and C=C"' =1, we can put ¢ = 1 for above results.

2 -1 0 11 1
A"TCA=| -1 2 -1 | and A"CA'=| 1 2 2
0 -1 1 1 2 3

2.1.7

For fixed-fixed system with ¢, =c;=¢, =1 and ¢, =0, the element matrix K is

1 -1 0 0 (1)888 _1118 1 0 0 0 _11(1)8 1 0 0

K=A"CA=| 0 1 -1 0 =00 -1 0 =l 0 1 -1
0010 0 -1 1 0 -1 1

00110001 0o 0 1 00 1 -1 0o 0 i 0 -1 2

To show the invertibility of the matrix K, we can find the upper triangular matrix U, by row

operation.

0

1 -1 | with pivots of three Is.
0

Then the determinant of the matrix K is det(K)=1x1x1=1>0. Since the determinant is

positive, the matrix K is invertible. for Ku=f=[ 1 1 1 ]", the solution u is

I 0 O U, 1 1 0 0 1
Ku=| 0 1 -1 u, |=f=| 1 |=] 0 |u+| 1 |u,+| -1 |u;=| 1

0 -1 2 U, 1 0 -1 2 1

Ltl:l 1

u, —uy=1 = u=1,u,=3 u,=2 = u=| 3

—U, +2u, =1 2

Physically, the fixed-free system becomes two separate systems, one is a fixed-free system with
one mass and one spring, and another is free-fixed system with two masses and two springs
(though the second free-fixed system is in reverse configuration).
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2.1.8

For free-free spring system, the element matrix K can be calculate by the definition K = A"CA .

A=( -1 1), C=c and K=ATCA:C[ ‘11 j( 11 ):c{ Lol J

-1 1

the force-displacement equation for the system is

S - u .
[ fl’l =c 11 11 " | where f;; = force for ith mass exerted by jth spring component
21 - u,

(a) Assemble K for spring 2 and 3 into eq. (11) for free-free solution

In the system, there are three masses (mass 1, 2 and 3) and two springs (spring 2 and 3) with
three corresponding displacement u,, u, and u,. For the first two masses connected by spring 2,

4. c, —-c¢ 0 u
‘fl,Z _ 1 —1 ul expand for 3 masses . _ ’ ’ 1
=G fZ,2 - —C, c, 0 U,
fra -1 1 u,

0 0 0 O Uy

For the masses 2 and 3 connected by spring 3,
f ) 0 0 O 0 u,
[ f2,3 J_ C3£ 11 —11 j[ 2 ] expand for 3 masses f2’3 — 0 C —C, u,

— u

>3 : fis 0 —¢; ¢ U,

Combining two results, the force-displacement for the free-free system is

fiz c, —c, 0 u,
fz,z +f2,3 =l 6 e G u,
f3’3 0 —C; c U,

which is the same as the eq. (11).
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(b) Include K for spring 1 to find K for fixed-free system as the eq. (8).

For this system, there is additional spring 1 which is fixed at one end and connected to the mass
1 at the other end. For mass 1 and spring 1,

0 ¢ -¢ 00 0
0 — Cl 1 _1 O expand fi 1 — _cl cl 0 0 ul
S -1 1 ) 0 0 0 00 | %
0 0 0O 0 O U,

If we simplify the matrix by eliminating zero row and column,

fi ¢ 0 0 u,
0 [zl 000 | u
0 000 ) 4

Combining this result with the result in (a), we can find the force-displacement relationship in
the fixed-free system.

Jutha c6tc, —¢ 0 u,
fz,z + fz,s = —C C,+te; —G U,
fis 0 —C, s U,

which is the same as the eq. (8).
(c) Place spring 4 to find K for fixed-fixed solution as the eq. (7).

For this system, there is additional spring 4 which is connected to the mass 3 at one end and
fixed at the other end. For mass 3 and spring 4,

0 0 0 O 0 u,

-f3,4 — C4 1 —1 u3 expand 0 — 8 8 O 0 I/l2
0 -1 1 0 fra G TG U,
0 0 0 —¢, ¢ 0

If we simplify the matrix by eliminating zero row and column,
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0 0 0 O u,
0 =l 0 0 O u,
fs,4 0 0 ¢ U,

Combining this result with the result in (b), we can find the force-displacement relationship in
the fixed-fixed system.

St fis ¢+c, —c 0 u,
fz,z + f2,3 = =G, C,t+ ¢y —C3 u,
Szt fra 0 —C; ctey Us

which is the same as the eq. (7).
2.3.7

Withb=(4,1,0, 1)at x=(0, 1, 2, 3), solve normal equation for coefficient # =(C, D) in the
nearest line C + Dx.

The system equation is

B

<

Il

S
=

7~ N\
NN
o =

N—
Il

—_— O =

W N = O

<>
Il

(5 Jrwmwomg( 2 (2]

Therefore, C =3 and D = -1, and the nearest line is y=3—x.
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2.3.8

In the previous problem, the projection P = A . Check that those four numbers do lie on the line
C+Dx, and compute the error e=b— P =b— A and verify A"e=0.

From the result of 2. 3. 7,

~
Il
>
<>
Il
—

VY
1w
N—
Il

S = D W

w N = O

It is obvious that points (0, 3), (1, 2), (2, 1) and (3, 0) lie on the line b =3 - x. For the error term,

= -1 where Arez[ 1

[\

1
0

—_ O =
S = N W

2.3.24

Find the plane that gives the best fit to the 4 values b= (0,1 ,3, 4) at the corners (1, 0), (0, 1), (-1,
0) and (0, -1) of a square. For the equation C + Dx + Ey =b, Au=5b where u=(C,D,E). At the
center of the square (0, 0), show that C + Dx + Ey = avg(b) = avg(0, 1, 3, 4).

The system equation is

110 ), 0
Au=>b = Lol u, |= !
1 -1 O 3
1o -1 U 4
For the least square solution &, A" Aii= A"b is satisfied.
1 1 1 1 i (1) ? C 1 1 1 1 (1)
ATAi=A"b = 1 0 -1 O 1 -1 D |=| 1 0 -1 0 3
01 0 -1 - E -
1 0 -1 010 ! 4
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Lo o
_1 4
400 ) C 8 4 0 0 |
=020 D |=| -3 | where (A"A)"'=| 0 2 0 | =| 0 = 0
002\ E -3 00 2 21
0 0 —
2
1
~ 00
4 2
C { 8 ;
i=| D |=A"A'ATb=| 0 = 0 || =3 |=| -=
2 2
. p V7 3
0 0 — 3
2 2

Therefore, C=2,D = —g and E = —% , and the best fit plane is 2 — %x— %y =b. To check the

average condition,

b(O,O):2—%0_%0:2:%:1@5]@)

2.4.1

and A for the graphs? Find A" A.

triangle square

What are the incidence matrices A

1) For triangular graph
-1 1 0 -1 0 -1 -1 1 O 2 -1 -1
Avwge=| 0 =1 1 |where A"A=| 1 -1 0 0 -1 1 |=| -1 2 -1
-1 0 1 0o 1 1 -1 0 1 -1 -1 2
2) For square graph
-L1roo -1 -1 -1 0 0 -broo 3 -1 -1 -1
-Lo 1o 1 0 0 -1 0 -bo 1o -1 2 0 -1
A .=l =1 0 0 1 | where ATA= -1 0 0 1 |=
g 01 0 0 -1 -1 0 2 -1
0 -1 01 0 0 1 1 1 0 -1 01 -1 -1 -1 3
0 0 -1 1 0 0 -1 1
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2.4.2

Find all vectors in the nullspace of A

triangle

and its traspose.

From the result of 2. 4. 1, for A,

riangle >

-1 1 0 U, 0 -1 1 0
Au=0=| 0 -1 1 u, (= 0 [=| 0 |u,+| =1 |u,+| 1 |u,
-1 0 1 U, 0 -1 0 1

—u,+u, =0, —u, +u,;=0 and —u, +u,=0 thatis u,=u, =u;, = Nu)=| c

Hence the nullspace solutionis N(u)=[ ¢ ¢ ¢ |" for arbitrary constant c.

: T
For its transpose (A,;,...) >

-1 0 -1 U, 0 -1 0 -1

Alu=0=| 1 -1 0 u, |=| 0 [=] 1 |u+| =1 |u,+| 0 |u,
0 1 1 ) u 0 0 1 1
C
u+u, =0, —u,+u;=0 and u, +u, =0 thatis u, =u, =—u;, = Nu)=| ¢
-c

Hence the nullspace solutionis N(u)=[ ¢ ¢ —c |' for arbitrary constant c.
2.4.7

What is K = A"CA for the four-node tree with all three edges into node 4? Ground a node to find
the reduced (invertible) K and det(K).

The four-note tree for this system is following.

O,
O 5
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0 0 -11

For the weight matrix C = diag(c,, ¢,, ¢;)

1 0 o 0 0 ¢ 0 0 -

1 -1 0 0 1 0 0 _
| 0 -1 0 € 2

K=A"CA= 0 ¢, O 0 -1 0 1 |=

0 0 - 0 0 -1 1 0 0 6 4

1 1 1 0 0 c

—C —C, —C; CTC,tCy

To ground node 4, we have to eliminate the fourth row and column from the matrix K.

¢ 0 O
Kreduced = O C2 0 Where det(Kreduced) = Cl X C2 X C3 = CICZCS
0 0 c

Note that, det(K) = 0 because the matrix K is linearly dependent (with rank(K) =4 - 1=3 <4)
and, therefore, singular.
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