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Jan-Christian Hiitter Solutions to pset 2

Problem Set 2

Problem 1, 1.4.7

By linearity of the equation —u” = f, we get a general solution for f(x) = é(x — 1) — 6(x — %) by adding
up the general solutions —R(x — %), R(x— %) (ramps) for right-hand sides §(x — %), —6(x — %) and a general

solution of u” = 0, x — Ax + B, for A,B € R. Fitting this to the boundary conditions yields u'(0) = A = 0
and u'(1) = A =0, so A = 0 is sufficient to satisfy both of them. Hence,

B, 0<x< %
W(x) = R(— 1) ~R(r~ ) +B=4 B—(x—1), T<x<?, BER B
B — %, % <x<1,
Problem 2, 1.4.9
o 1 1 o 1
u(x) = ./0 (1- x)ada+./x (1—a)xda= 5(1 — x)a? 0— 5(1 —a)%x ) (2)
:%<x2—x3+(1—x)2x):%<x—x2>, (3)
which is the solution to —u”" = 1 for fixed-fixed boundary conditions from class.
Problem 3, 1.4.11
Integrating with 0 as end-point yields
N 0, x<0, ¥ 0, x<0,
Q(x) =/O R(x) = { %x% £, C(x) =/0 Qx) = { %xgl e (4)

Since these functions are iterated integrals, they are derivatives of each other. By inspection, C'(x) = Q(x),
C"(x) = R(x), C"'(x) = S(x), so the first two derivatives are continuous, while the third one isn’t.
We can plot C and Q with

x = linspace(—2, 2, 100);

plot(x, (x > 0).*x0.5.%xx.72, %, (x > 0).%*x.73/6);
axis([—2 2 —=0.5 21]);

legend ('0O(x) "', 'C(x)");
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Problem 4, 1.5.9

1 -1 0 0 _11 (1) 8 2 -1 0
ATA_=10 1 -1 0 0 1 1|=1]"1 2 -1 =K, (5)
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Figure 1: Plot of Q(x), C(x)
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AAT=|7b 10 {0 1 -1 0]: 12— 0 =By (6)
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And we can check using

e = ones (3,1);
DeltaMin = spdiags([e —e], [0, —11, 4, 3);

N

lambdal = eig(DeltaMinxDeltaMin');
lambda2 = eig(DeltaMin'«*DeltaMin) ;
that
0.000 osess
M= , Ay = |2.0000 | . (7)
2.0000 34142
3.4142 )

Problem 5, 1.6.3
For any matrix A, AT A will at least be positive semi-definite by

uTATAu = |Aul> >0, ueV. (8)
On the other hand, Gaussian elimination of A yields

1 0 -1
01 -1, 9)
00 0

from where we see that ker A = span{(1 1 1)T}. For elements u in that span, we’ll also have Cu =
AT Au = 0, and by (8), these are all the elements in ker C. Therefore, C is only positive semi-definite.

Problem 6, 1.6.9

Let’s call the first A A7 and the second one A;. We have that the first upper left determinant of the first A;
is 1> 0, and det(A1) =9 —b*> > 0 & |b| < 3, so it is positive definite for these b. For the A, the upper left
determinant is 2 > 0, and det(A;) = 2c —16 > 0 < ¢ > —8, so for these ¢, it is positive definite.




Row reduction on A; yields

1 b| row2-bxrow1 |1 b (10)
b 9 "o 9-w?)
which means that the LDLT decomposition is
1 0] 1 0 1 b
A= 1} {o 9—b2] [o 1]' (11)
Similarly, row reducing A, leads to
2 4] row 2—2xrow 1 |2 4 (12)
4 c| 0 c—-8]’
S0
1 0/(2 O 1 2
Az = [2 1} [o c—s] [0 1]' (13)
Problem 7, 1.6.20
First, note that with
__|cos® —sind 12 0 . T T
_[sinG COSG:|’ A—{O 5}, we have A = OAO" and O'O = [. (14)

By the multiplicativity of the determinant, det(A) = det(O)det(A)det(OT), and since 1 = det(O70),
det(O) = det(OT)~!, so det(A) = det(A) = 10. Moreover, the eigenvectors of A are the column vectors
of O, since multiplying either one of them with OT first yields a vector of the standard basis (by orthogonality
of O), which is an eigenvector of A, that subsequently gets mapped back to the column of O. (In other words,
AO = OA, which is an eigenvalue decomposition.) That means the eigenvector, eigenvalue pairs are

cos 6 —sinf
M=2 o= {sinﬂ}’ M =5 v = {cos@ ] (15)
A is positive definite because all eigenvalues are > 0.
Problem 8, Master Equations
a) Denoting D = diag(dj, ..., ds), the product becomes
16 did,! 0 0 0
l6drd;!  —10  2dpd;?
DAD'=| 0  9dyd,! -6 3did;t 0 |. (16)
0 0  4dd;' -4 4dudc!
0 0 0  dsdyt -4
Setting the off-diagonals equal yields four equations,
d? = 1643, 243 =943, 3d%=4d;, 4d3=d3. (17)
Picking an arbitrary di # 0, for example d; = 4, we can solve iteratively to get (as one possible choice out of
many):
V2 1 \F
f 4 f— 1 _ — —_ —— f— =,
dl 7 dZ ’ d3 3’ d4 \/6’ d5 3 (18)

which renders DAD~! symmetric. An eigenvalue decomposition for this matrix, DAD~! = OAOT with O
orthogonal, in turn yields one for A, A = D"'OA(D~10)7!, so all eigenvalues of A are real.



b) Executing the code

:+ Ns = [5, 50, 100];
2 for N = Ns

3 b = 0:N—-1;
4 f = b.AZ;
5 f = fliplr(f);
6 s = b+f;
7 A = spdiags([f' —s' b'], [-1 0 1], N, N);
8 e = eig(full(d));
9 plot(e, ".");
10 title(sprintf('N = %i', N))
11 saveas (gcf, sprintf('p08—%i.eps', N), 'epsc');
12 end
yields
N=5
5 : : : N =50
500 ;
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Figure 2: Eigenvalue plots




